Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Micropatterned substratum adhesiveness : a model for morphogenetic cues controlling cell behavior

Britland, S and Clark, P and Connolly, P and Moores, G (1992) Micropatterned substratum adhesiveness : a model for morphogenetic cues controlling cell behavior. Experimental Cell Research, 198 (1). pp. 124-129. ISSN 0014-4827

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

It is generally considered that tracks of cell adhesiveness are important in controlling cell migration during the development and regeneration of many tissues. In order to investigate this experimentally, a number of techniques have in the past been employed to make patterns of differential adhesiveness for in vitro studies. However, practical limitations on patterning resolution and the introduction of residual topography to the experimental substrata have restricted their usefulness. Here we describe a simplified photolithographic technique for patterning cell adhesiveness which allows a high degree of flexibility and precision. We have quantified, using adhesion and spreading characteristics of BHK cells, the differential adhesiveness that can be created on patterned surfaces, how this alters with the duration of exposure to serum proteins, and how this, in turn, relates to the persistence of cell patterning despite increases in cell density. We believe that this technique will prove extremely useful for the detailed in vitro examination of the mechanisms controlling cell behavior as it offers a degree of precision and ease of fabrication that has previously been unavailable.