Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

The regulation of the cGMP-binding cGMP phosphodiesterase by proteins that are immunologically related to gamma subunit of the photoreceptor cGMP phosphodiesterase

Lochhead, A and Nekrasova, E and Arshavsky, V Y and Pyne, N J (1997) The regulation of the cGMP-binding cGMP phosphodiesterase by proteins that are immunologically related to gamma subunit of the photoreceptor cGMP phosphodiesterase. Journal of Biological Chemistry, 272 (29). pp. 18397-18403. ISSN 1083-351X

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The cGMP phosphodiesterase from retinal rods (PDE-6) is an alphabetagamma2 heterotetramer. The alpha and beta subunits contain catalytic sites for cGMP hydrolysis, whereas the gamma subunits serve as a protein inhibitor of the enzyme. Visual excitation of photoreceptors enables the activated GTP-bound form of the G-protein transducin to remove the inhibitory action of the gamma subunit, thereby triggering PDE-6 activation. The type 5 phosphodiesterase (PDE-5) isoform shares a number of similar characteristics with PDE-6, including binding of cGMP to noncatalytic sites, the cyclic nucleotide specificity, and inhibitor sensitivities. Although the functional role of PDE-5 remains unclear, it has been shown to be activated by protein kinase A (PKA) (Burns, F., Rodger, I. W. & Pyne, N. J. (1992) Biochem. J. 283, 487-491). Here we report that both the recombinant gamma subunit and a peptide corresponding to amino acids 24-46 in this protein inhibited the activation of PDE-5 by PKA. Furthermore, immunoblotting airway smooth muscle membranes with a specific antibody against amino acids 24-46 of the PDE-6 gamma subunit identified two major immunoreactive small molecular mass proteins of 14 and 18 kDa (p14 and p18). These appear to form a complex with PDE-5, because PDE activity was immunoprecipitated using antibody against the PDE-6 gamma subunit. p14 and p18 were also substrates for phosphorylation by a unidentified kinase that was stimulated by a pertussis toxin-sensitive G-protein. Phosphorylation of p14/p18 in membranes treated with guanine nucleotides correlated with a concurrent reduction in the activation of PDE-5 by PKA. We suggest that p14 and p18 share an epitope common to PDE-6 gamma and that this region may interact with PDE-5 to prevent its activation by PKA.