Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Treatment of intact hepatocytes with either the phorbol ester TPA or glucagon elicits the phosphorylation and functional inactivation of the inhibitory guanine nucleotide regulatory protein Gi

Pyne, N J and Murphy, G J and Milligan, G and Houslay, M D (1989) Treatment of intact hepatocytes with either the phorbol ester TPA or glucagon elicits the phosphorylation and functional inactivation of the inhibitory guanine nucleotide regulatory protein Gi. FEBS Letters, 243 (1). pp. 77-82. ISSN 0014-5793

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The antiserum AS7 can specifically immunoprecipitate alpha-Gi from membrane extracts as well as from a mixture of purified alpha-Gi and alpha-Go as ascertained using [32P]ADP-ribosylated G-proteins. Using this antiserum to immunoprecipitate alpha-Gi from hepatocytes labelled with 32P it was evident that alpha-Gi was phosphorylated under basal (resting) conditions. Challenge of hepatocytes with the tumour promoting phorbol ester TPA, however, elicited a marked enhancement of the phosphorylation state of alpha-Gi. This was accompanied by the loss of inhibitory effect of Gi on adenylate cyclase, as judged by the inability of low concentrations of p[NH]ppG to inhibit forskolin-stimulated adenylate cyclase activity. Such actions were mimicked by treatment of hepatocytes with either glucagon or TH-glucagon, an analogue of glucagon which is incapable of activating adenylate cyclase and elevating intracellular cyclic AMP concentrations. Pre-treatment of hepatocytes with either glucagon, TPA or insulin did not affect the ability of pertussis toxin to cause the NAD+-dependent, [32P]ADP-ribosylation of alpha-Gi in membrane fractions isolated from such pre-treated hepatocytes. We suggest that protein kinase C can elicit the phosphorylation and functional inactivation of alpha-Gi in intact hepatocytes. As pertussis toxin only causes the ADP-ribosylation of the holomeric form of Gi, it may be that phosphorylation leaves alpha-Gi in its holomeric state.