Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.


Conditional confined oscillatory dynamics of Escherichia coli strain K12-MG1655 in chemostat systems

Ofiteru, Irina Dana and Ferdes, Mariana and Knapp, Charles W. and Graham, David W. and Lavric, Vasile (2012) Conditional confined oscillatory dynamics of Escherichia coli strain K12-MG1655 in chemostat systems. Applied Microbiology and Biotechnology, 84 (1). pp. 185-192. ISSN 0175-7598

Full text not available in this repository. Request a copy from the Strathclyde author


A series of continuous- and sequencing-batch reactor experiments were performed to assess the growth dynamics of Escherichia coli strain K12-MG1655 in chemostat systems. Previous mathematical predictions and early experimental results had shown that confined oscillatory dynamics ensue in bioreactor populations, which relates to “group birth and death” events within the population. New results are reported here that generally verify the predictions of the model and show that confined oscillations occur under different initial conditions, but the characteristics of the oscillatory dynamics vary as a function of the hydraulic retention time (HRT). Bioreactors were operated at HRTs ranging from 2.7 to 35 h and, regardless of initial conditions or the imposition of transient operational instabilities, highly patterned oscillations developed when HRT was between ∼3 and 8 h. However, outside of this range, bioreactor populations tended to form biofilms on the reactor walls (although the majority of the cells remained suspended in the bulk solution) and stable oscillations were not seen in the bulk phase. This suggests that alternate operating “states” might exist in chemostat populations with biofilm formation and non-homogenous spatial growth influencing “system” dynamics at very low and high HRTs. Although the model accurately predicts a confined dynamic equilibrium for mid-range HRT operations, experimental data show that model predictions do not extend outside of this range, when an alternate stable-state seems to be attained.