Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Optimal filters with multiresolution apertures

Marshall, Stephen and Green, Alan C. and Dougherty, Edward R. and Greenhalgh, David (2004) Optimal filters with multiresolution apertures. Journal of Mathematical Imaging and Vision, 20 (3). pp. 237-250. ISSN 0924-9907

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

This paper presents an extension to the recently introduced class of nonlinear filters known as Aperture Filters. By taking a multiresolution approach, it can be shown that more accurate filtering results (in terms of mean absolute error) may be achieved compared to the standard aperture filter given the same size of training set. Most optimisation techniques for nonlinear filters require a knowledge of the conditional probabilities of the output. These probabilities are estimated from observations of a representative training set. As the size of the training set is related to the number of input combinations of the filter, it increases very rapidly as the number of input variables increases. It can be impossibly large for all but the simplest binary filters. In order to design nonlinear filters of practical use, it is necessary to limit the size of the search space i.e. the number of possible filters (and hence the training set size) by the application of filter constraints. Filter constraints take several different forms, the most general of which is the window constraint where the output filter value is estimated from only a limited range of input variables.