Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Case-based reasoning for coordinated voltage control on distribution networks

Xu, T. and Wade, N.S. and Davidson, E.M. and Taylor, P.C. and Mcarthur, S.D.J. and Garlick, W.G. (2011) Case-based reasoning for coordinated voltage control on distribution networks. Electric Power Systems Research, 81 (12). pp. 2088-2098. ISSN 0378-7796

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

A significant amount of distributed generation (DG) is being connected to electricity distribution networks. This brings with it a number of network planning and operational challenges, including voltage control, protection issues, altered transient stability, bi-directional power flow and increased fault levels. Controlling network voltages, while also providing access for the increasing numbers of DG installations is one of the most important challenges. This paper describes a novel approach to voltage control for networks with multiple connected distributed generators, which employs case-based reasoning and online verification to select an appropriate set of control actions in the face of voltage excursions. The approach, case studies which illustrate its feasibility when applied to different networks and details of a prototype implementation using a commercially available substation computing platform are presented.