Picture of a sphere with binary code

Making Strathclyde research discoverable to the world...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. It exposes Strathclyde's world leading Open Access research to many of the world's leading resource discovery tools, and from there onto the screens of researchers around the world.

Explore Strathclyde Open Access research content

Effect of 405 nm high-intensity narrow-spectrum light on fibroblast populated collagen lattices : an in vitro model of wound healing

Mcdonald, Richard and Grant, M. Helen and Macgregor, Scott J. and Anderson, John G. and Maclean, Michelle (2011) Effect of 405 nm high-intensity narrow-spectrum light on fibroblast populated collagen lattices : an in vitro model of wound healing. Journal of Biomedical Optics, 16 (4). ISSN 1083-3668

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

High-intensity narrow-spectrum (HINS) 405-nm light is a novel technology developed to address the significant problem of health-care associated infection. Its potential for wound-decontamination applications is assessed on mammalian cells and bacteria. The fibroblast-populated collagen lattice (FPCL) is used as an in vitro model of wound healing, and the effect of HINS light on contraction is examined. Effects on cell proliferation, morphological changes, and α-smooth muscle actin (α-SMA) expression are investigated. Bactericidal effects are assessed using the bacterium Staphylococcus epidermidis. Low doses of HINS light were found to have no significant inhibitory effects on FPCL contraction, cell proliferation, or α-SMA expression. Doses of up to 18 Jcm−2 had no significant inhibitory effects on FPCL cell numbers, and this dose was shown to cause almost complete inactivation of bacteria. These results show that HINS light has potential for disinfection applications without adversely influencing wound healing.