Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Trypanosoma brucei metacaspase 4 is a pseudopeptidase and a virulence factor

Proto, William R and Castanys-Munoz, Esther and Black, Alana and Tetley, Laurence and Moss, Catherine X and Juliano, Luiz and Coombs, Graham H and Mottram, Jeremy C (2011) Trypanosoma brucei metacaspase 4 is a pseudopeptidase and a virulence factor. Journal of Biological Chemistry.

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Metacaspases are caspase family cysteine peptidases found in plants, fungi and protozoa, but not mammals. Trypanosoma brucei is unusual in having five metacaspases (MCA1-MCA5) of which MCA1 and MCA4 have active site substitutions, making them possible non-enzymatic homologues. Here we demonstrate that recombinant MCA4 lacks detectable peptidase activity, despite maintaining a functional peptidase structure. MCA4 is expressed primarily in the bloodstream form of the parasite and associates with the flagellar membrane via dual myristoylation/palmitoylation. Loss of function phenotyping revealed critical roles for MCA4; rapid depletion by RNAi caused lethal disruption to the parasite's cell cycle, yet the generation of MCA4 null mutant parasites (mca4) was possible. mca4 had normal growth in axenic culture, but markedly reduced virulence in mice. Further analysis revealed that MCA4 is released from the parasite and is specifically processed by MCA3, the only metacaspase that is both palmitoylated and enzymatically active. Accordingly we have identified that the multiple metacaspases in T. brucei form a membrane-associated proteolytic cascade to generate a pseudopeptidase virulence factor.