Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Comparison of calibration methods for the monitoring of a fluorobenzene batch reaction using low-field F-19 NMR, H-1 NMR, NIR, and Raman spectrometries

Nordon, A and Meunier, C and McGill, C A and Littlejohn, D (2002) Comparison of calibration methods for the monitoring of a fluorobenzene batch reaction using low-field F-19 NMR, H-1 NMR, NIR, and Raman spectrometries. Applied Spectroscopy, 56 (4). pp. 515-520. ISSN 0003-7028

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The suitability of different process spectrometry techniques has been assessed, in terms of calibration requirements, accuracy, and precision, for the at-line monitoring of the sulfonation of fluorobenzene. Partial least-squares (PLS) calibration was required to analyze the spectra obtained by, NIR spectrometry and low-field (29.1 MHz) H-1 NMR spectrometry. The low-field (27.4 MHz) F-19 NMR spectra contained ell-resolved signals for the three fluorine containing compounds and univariate calibration was adequate. The Raman spectra of two of the compounds exhibited fluorescence and so this technique was not considered suitable for monitoring the reaction. The accuracy of the results obtained using univariate analysis of the F-19 NMR data and PLS analysis of NIR data were comparable (average % error of 3.5 and 2.9%, respectively, for concentrations >0.5 mol dm(-3) and 11.3 and 11.1%, respectively, for <0.5 mol dm(-3)). The least accurate results were obtained using PLS analysis of low-field 1H NMR data, as the spectra of two of the components were too similar. For concentrations >0.05 mol dm(-3), the most precise results were obtained with PLS analysis of NIR data (average RSD of 1.6%), although the precision of the results obtained using univariate analysis of F-19 NMR data was still good (average RSD of 3.7%).