Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Sphingosine kinase inhibitors and cancer : seeking the golden sword of Hercules

Pyne, Susan and Bittman, Robert and Pyne, Nigel (2011) Sphingosine kinase inhibitors and cancer : seeking the golden sword of Hercules. Cancer Research, 71 (21). pp. 6576-6582. ISSN 0008-5472

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

There is considerable evidence that sphingosine kinases play a key role in cancer progression, which might involve positive selection of cancer cells that have been provided with a survival and growth advantage as a consequence of overexpression of the enzyme. Therefore, inhibitors of sphingosine kinase represent a novel class of compounds that have potential as anticancer agents. Poor inhibitor potency is a major issue that has precluded successful translation of these compounds into the clinic. However, recent discoveries have shown that sphingosine kinase 1 is an allosteric enzyme and that some inhibitors offer improved effectiveness by inducing proteasomal degradation of the enzyme or having nanomolar potency. Herein, we provide a perspective about these recent developments and highlight the importance of translating basic pharmacologic and biochemical findings on sphingosine kinase into new drug discovery programs for treatment of cancer.