Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Towards a universal information distance for structured data

Connor, Richard and Simeoni, Fabio and Iakovos, Michael and Moss, Robert George (2011) Towards a universal information distance for structured data. In: SISAP '11 Proceedings of the Fourth International Conference on SImilarity Search and APplications. ACM Press, pp. 69-77. ISBN 978-1-4503-0795-6

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The similarity of objects is one of the most fundamental concepts in any collection of complex information; similarity, along with techniques for storing and indexing sets of values based on it, is a concept of ever increasing importance as inherently unordered data sets become ever more common. Examples of such datasets include collections of images, multimedia, and semi-structured data. There are however two, largely separate, classes of related research. On the one hand, techniques such as clustering and similarity search give general treatments over sets of data. Results are domain-independent, typically relying only on the existence of an anonymous distance metric over the set in question. On the other hand, results in the domain of similarity measurement are often limited to the context of pairwise comparison over individual objects, and are not typically set in a wider context. Published algorithms are scattered over various demand-led subject areas, including for example bioinformatics, library sciences, and crime detection. Few, if any, of the published algorithms have the distance metric properties. We have identified a distance metric, Ensemble Distance, which we believe can help to bridge this gap. Ensemble Distance is a non-Euclidean distance metric which we believe can be used in the treatment of many classes of structured data. For any complex type where a useful characterisation exists in the form of an ensemble, we can produce a distance metric for that type. This will in turn allow use of the complex type within off-the-shelf clustering and similarity search algorithms; this would be a major result in the management of complex data sets.