Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Classification of bijections between 321- and 132-avoiding permutations

Claesson, Anders and Kitaev, Sergey (2008) Classification of bijections between 321- and 132-avoiding permutations. Séminaire Lotharingien de Combinatoire, 60.

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

It is well-known, and was first established by Knuth in 1969, that the number of 321-avoiding permutations is equal to that of 132-avoiding permutations. In the literature one can find many subsequent bijective proofs of this fact. It turns out that some of the published bijections can easily be obtained from others. In this paper we describe all bijections we were able to find in the literature and show how they are related to each other via "trivial" bijections. We classify the bijections according to statistics preserved (from a fixed, but large, set of statistics), obtaining substantial extensions of known results. Thus, we give a comprehensive survey and a systematic analysis of these bijections. We also give a recursive description of the algorithmic bijection given by Richards in 1988 (combined with a bijection by Knuth from 1969). This bijection is equivalent to the celebrated bijection of Simion and Schmidt (1985), as well as to the bijection given by Krattenthaler in 2001, and it respects 11 statistics - the largest number of statistics any of the bijections respects.