
A preliminary evaluation of text-based and dependency-based techniques
for determining the origins of bugs

Steven Davies, Marc Roper & Murray Wood
Computer and Information Sciences

University of Strathclyde
Glasgow, UK

{Steven.Davies,Marc.Roper,Murray.Wood}@cis.strath.ac.uk

Abstract—A crucial step in understanding the life
cycle of software bugs is identifying their origin. Un-
fortunately this information is not usually recorded
and recovering it at a later date is challenging.
Recently two approaches have been developed that
attempt to solve this problem: the text approach
and the dependency approach. However only limited
evaluation has been carried out on their effectiveness
so far, partially due to the lack of data sets linking
bugs to their introduction. Producing such data sets
is both time-consuming and challenging due to the
subjective nature of the problem. To improve this,
the origins of 166 bugs in two open-source projects
were manually identified. These were then compared
to a simulation of the approaches. The results show
that both approaches were partially successful across
a variety of different types of bugs. They achieved a
precision of 29%–79% and a recall of 40%–70%, and
could perform better when combined. However there
remain a number of challenges to overcome in future
development — large commits, unrelated changes and
large numbers of versions between the origin and the
fix all reduce their effectiveness.

Keywords-software maintenance, bug-introducing
changes, mining software repositories

I. Introduction

Previous studies have suggested that software devel-
opers can spend nearly half their time fixing bugs [1],
and the impact of bugs on cost and effort is a well-
documented problem faced by the entire industry. Many
techniques and tools have been developed which attempt
to prevent bugs from being introduced in the first place
by producing warnings based on evaluating some aspect
of the code. Often this is done by inferring common
patterns from code which contains bugs and then finding
similar code. Many of these tools solely examine the
current version of code, using the number of bugs that
have been identified in the past.

More sophisticated techniques may mine the history of
the code. However, accurately identifying which changes
originally caused a bug is challenging due to factors such
as the length of time between introducing and reporting
a bug, and the potentially substantial changes that may
have been made to the code in the meantime.

Identifying which changes actually introduced a bug
could be useful in improving the accuracy of any of these
bug prevention tools or allowing the introduction of
more advanced techniques altogether. Amongst others,
possibilities such as measuring the lifetime of bugs and
predicting whether a change is likely to introduce a bug
have been identifed by Kim et al. [2].

Software developers and managers would also stand
to benefit from identifying when their bugs were intro-
duced. The data could be used, for example, to high-
light periods of time when more bugs were introduced
than normal or to assess how individual developers,
departments or projects differ in their ability to detect
and correct bugs. This could then be used to pinpoint
weaknesses in their processes. Identifying such changes
also opens possibilities for researchers to more closely
examine the kinds of changes that can introduce bugs.

In recent years two approaches have been developed
that attempt to discover the origin of a bug by examining
the changes made to fix it. Both approaches start from
the version of code that fixed the bug and progressively
examine preceding versions until they find the version
that introduced the bug. They differ in how they ex-
amine the changes between versions: the text approach
[3] uses only the change in the text itself while the
dependency approach [4] uses changes in relationships
between lines of code.

Unfortunately implementations of the approaches are
not yet readily available. The dependency approach in
particular is complex, with a large number of implemen-
tation challenges. The text approach, while conceptually
simpler, is still non-trivial. Before deciding whether to
invest the large amount of time required to implement
either approach it is reasonable to ask how accurate they
would be, especially given their differences. To evaluate
this, this work has manually identified the origin of a
number of bugs and compared them to the results given
by a simulation of the approaches.

II. Identifying Bug Origins

Two components of modern development are crucial to
help identify the origin of a bug: software configuration

©2011 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.



...
int shift = isCarbon ? -25 : -10;
light = display.getSystemColor(SWT.BACKGROUND);
dark = new Color(display, Math.max(0, light.getRed() + shift),

Math.max(0, light.getGreen() + shift),
Math.max(0, light.getBlue() + shift));

textColor = display.getSystemColor(SWT.FOREGROUND);
...

(a) v1.39

...
1.17 int shift = isCarbon ? -25 : -10;
1.7 light = display.getSystemColor(SWT.BACKGROUND);
1.8 dark = new Color(display, light.getRed() + shift,
1.8 light.getGreen() + shift,
1.8 light.getBlue() + shift);
1.24 textColor = display.getSystemColor(SWT.FOREGROUND);

...

(b) v1.38 (Version numbers on left)

...
boolean carbon = "carbon".equals(SWT.getPlatform());
int shift = carbon ? -25 : -10;
light = display.getSystemColor(SWT.BACKGROUND);
dark = new Color(display, light.getRed() + shift,

light.getGreen() + shift,
light.getBlue() + shift);

taskColor = display.getSystemColor(SWT.FOREGROUND);
...

(c) v1.8

...
boolean carbon = "carbon".equals(SWT.getPlatform());
light = display.getSystemColor(SWT.BACKGROUND);
if (carbon)
dark = new Color(display, 230, 230, 230);
else
dark = new Color(display, 245, 245, 245);
taskColor = new Color(display, 120, 120, 120);
...

(d) v1.7

Figure 1. Eclipse Bug 63216 - NewProgressViewer.java. Names and formatting altered for clarity.

management (SCM) and bug tracking systems (BTSs).

SCM allows multiple developers to work on a project
by coordinating their changes. Developers check out a
copy of the code from a central repository, make changes
on their own machine, then commit their changes back
to the repository. When committing, developers usually
include a comment describing the changes they have
made. Each commit results in a new version of the code
being stored in the SCM repository.

BTSs store information about problems with the code,
called issues. Usually the information recorded for each
issue includes: an ID; a description; how to reproduce
the issue; and the current status, e.g. fixed, invalid, in
progress, etc. Additionally, the BTS often records the
type of issue. Many classifications exist but two of the
most common are enhancements, which are requests for
new functionality, and bugs, which are areas where the
software does not do what it is supposed to.

While these systems are not usually integrated, tech-
niques exist to combine their information [3]. When
fixing issues, developers often include the issue ID in
their commit comment. Issues can therefore be linked to
the commits that fix them by extracting the comments

from the SCM repository and searching for issue IDs.
Whilst other techniques for this task have been proposed
[5], they have not been applied in this work.

A. Text Approach

Fig. 1 shows four versions of the file NewPro-

gressViewer.java. In version 1.39 the developers fixed
a bug where, in certain scenarios, negative values were
passed to the Color constructor causing an Ille-

galArgumentException. To remove the error three of
the lines were updated to wrap parameters with calls to
Math.max(0, ...) and so avoid the negative numbers.
Using the text approach first proposed by Śliwerski et
al. [3], to determine when this bug was introduced the
cvs diff command is run on version 1.39. This command
identifies all the lines that were added, removed or
changed in that commit. The cvs annotate command is
then run on the previous version, 1.38. This command
displays the last version to change each line of code. For
each line altered in the fix the version it was previously
altered in is considered a possible origin of the bug. In
this example each of the updated lines was last changed
in version 1.8. Comparing version 1.8 to version 1.7

void applyResult(DecorationResult result){
...

1: ImageDescriptor [] resultDescriptors = result.getDescriptors();
3: for(int i = 0; i < descriptors.length; i ++){
4: if(resultDescriptors[i] != null)
5: descriptors[i] = resultDescriptors[i];

}
...

}

(a) v1.6

void applyResult(DecorationResult result){
...

1: ImageDescriptor [] resultDescriptors = result.getDescriptors();
2: if(resultDescriptors != null){
3: for(int i = 0; i < descriptors.length; i ++){
4: if(resultDescriptors[i] != null)
5: descriptors[i] = resultDescriptors[i];

}
}
...

}

(b) v1.7

Figure 2. Eclipse Bug 66653 - DecorationBuilder.java



shows that this was indeed when the bug was introduced,
as previously these values were set to specific numbers.

Various proposed improvements to the original ap-
proach are detailed in Section VI. Most pertinent to
this study is that changes in formatting, whitespace and
comments can be ignored, as they are unlikely to have
been involved in causing or fixing a bug [2].

Unfortunately the text approach is not suitable for all
bugs. Fig. 2 shows a bug involving a NullPointerExcep-

tion in the file DecorationBuilder.java. The bug was
fixed by surrounding existing code with an if statement
that checks whether the variable is null. As these added
lines did not exist in the previous version of code, cvs
annotate cannot be used and the text approach cannot
therefore identify any origin for this type of bug. A
potentially more serious flaw is that there is no guarantee
that a bug was actually introduced at the same location
as it was fixed.

B. Dependency Approach

The dependency approach [4] attempts to address
some of the text approach’s shortcomings by examining
changes in the behaviour of the code rather than simply
the text. A graph of a method’s control and data depen-
dencies is built, known as a program dependence graph
(PDG). Informally, a line of code X is data dependent
on another line Y if Y could potentially have been the
last to set the value of a variable used by X. A line X is
control dependent on another line Y if X may or may
not be executed dependent on the result of Y. Lines of
code are represented by nodes in the PDG while the
dependencies are shown as two different types of edge.

To determine the origin of the bug in Fig. 2 the depen-
dency approach compares the PDG for the fixed version
to the PDG for the previous version. The approach first
identifies any removed dependencies. Added dependen-
cies are only examined if no dependencies were removed.

Control
Dependency

Data
Dependency

Added
in v1.7

Removed
in v1.7

(a) Legend

1

3

5

4

entry

(b) v1.6

1

3

2

5

4

entry

(c) v1.7

Figure 3. PDGs for DecorationBuilder.java

As shown in Fig. 3, the control dependency of line 3
on method entry has been removed and the line now
has a control dependency on the new if statement. The
approach therefore builds the PDG for each preceding
version until it finds when this dependency was added.
In this case the dependency, and the bug, was introduced
in version 1.5 when the method was created. If there are
multiple dependencies removed in the fix the dependency
approach returns the most recent version in which one
of these dependencies was introduced.

Fig. 3 also shows that a new line 2 has been intro-
duced, with two new corresponding control dependencies
and a new data dependency from line 1 to line 2. As dis-
cussed, the approach prioritises removed dependencies
but if no dependencies had been removed the approach
would have built PDGs for preceding versions until it
found the most recent one that altered either the source
or target line of any of the new dependencies.

There are two possible variations on the approach. The
intraprocedural approach, described above, only consid-
ers dependencies within a single method. The interproce-
dural approach analyses dependencies between methods,
which may give better results but is more complex and
challenging to build. The interprocedural approach was
not used in this study due to its complexity.

The dependency approach is not appropriate for all
bugs. Using the intraprocedural approach the bug fix in
Fig. 1 would not result in any change to the method’s
dependencies. The approach could not therefore identify
the origin of the bug.

III. Evaluation

As stated previously, limited evaluation has so far been
performed on the approaches. The original text approach
[3] did not validate whether the commits identified by
the approaches actually caused the bugs in question.
Subsequent work has focused on evaluating updated
approaches relative to the original, by examining which
results have been added or removed. In particular, com-
mits which introduced bugs but which are not returned
by the approaches have not been previously assessed.
Identifying whether a commit caused a bug is time-
consuming and subjective, as there is no one definition
of bug and there may well be multiple causes that could
be said to introduce a bug. Therefore this section will
evaluate a manual simulation of the approaches. This
allows their expected effectiveness to be assessed prior
to any implementation.

A. Subject

The systems under examination are Eclipse1, an IDE
and development platform, and Rachota2, a time track-

1http://www.eclipse.org
2http://rachota.sourceforge.net



ing application. These were selected as they vary con-
siderably in size, maturity and usage, although both are
open-source, written in Java and use CVS. Bug and
commit data for Eclipse was obtained from Promise
[6], and contains a collection of fixes, each of which is
a commit linked to a bug as described in Section II.
The set contains every fix which could be linked to a
bug and which occurred from six months before the 3.0
release of Eclipse until six months afterwards. However,
bugs may have been introduced in earlier releases and
all previous versions were included in the evaluation. A
series of scripts was used to select a random sample of
100 bugs, out of 4136 in total. These were linked to 301
separate commits (from a total of 10402). While this
sample size may be considered small, the time required
for evaluation prohibited the study of a larger sample.

The data for Rachota was obtained from FLOSS-
Metrics3. By a manual examination, all issues raised
before 3rd September 2008 and fixed before 15th March
2011 were classified into bugs and enhancements, as the
Rachota BTS does not record this information. Then 242
fixing commits were identified for each of the 66 bugs in
Rachota. Only the 130 commits involving Java files will
be considered in this evaluation, but problems related to
other files are explored in Section IV-H.

B. Origin Classification

Before assessing the approaches the origins of each of
the bugs had to be manually identified — a substantial
undertaking. For each commit in the sample the changes
that fixed the bug were examined4. Previous versions
were then examined to determine which version the bug
first appeared in. If code was moved between methods,
or extracted to new methods, the origin was traced
through the original methods, as long as the bug could
still be said to exist in the older version. Additionally,
information provided in the bug and commit comments
was used to help locate the origin.

If the bug was introduced by a change to an earlier
version of the file, the fixing commit was then classified
as either Single or Multiple, depending on the number
of instances of the bug in the file. For example, Eclipse
Bug 62932 was a NullPointerException that occurred
when elements containing a particular type of breakpoint
were renamed. However, the bug occurred when any of a
project, package or type was renamed or moved. Each of
these followed a separate route through the code, and so
each is considered a separate instance of the bug, with
a separate origin. The commit is therefore classed as
Multiple. Note that commits can be classed as Multiple
whenever there is more than one instance of a bug even
if each was introduced in the same version.

3http://flossmetrics.org/
4Full results are at http://personal.cis.strath.ac.uk/∼spd/

Not all bugs had origins in the same file. When no
versions of the file could be identified as causing the bug
then the fixing commit was classed as one of: Elsewhere
if the bug was introduced by a change to another file;
Unrelated if the commit is not actually related to the
bug in question; or Related if there was no bug in the
file but it was still involved in fixing the bug.

Table I shows the number of commits for each clas-
sification. For some commits the origin could not be
determined. These were classed as Unclear. Note that
these 20 files relate to just 3 bugs. All files for these bugs
have been omitted from the remainder of the evaluation.

C. Approach Classification

To evaluate the text approach each commit was again
analysed. Each line of code removed or updated was
manually examined in the preceding version, using the
ViewVC repository browser. Each of the versions identi-
fied by the annotated view was also examined in order to
ensure that the version reported was correct. Each line
in a fix could lead back to a different version; the full set
of versions found was recorded.

The evaluation was done as if each version of the
code had been run through a preprocessor to standardise
whitespace and brace formatting, and remove comments.
This meant changes in whitespace, formatting and com-
ments were disregarded; the code was traced back until
the last actual change was made. Adding or removing
comment markers around lines of codes (as happened
in Eclipse Bug 60768) was therefore treated as adding
or removing those lines. Changes to import statements
were also ignored as these were either accompanied by
other changes or were unused and so unrelated to the
bug. Such techniques could easily be automated [2].

To evaluate the dependency approach, the old and new
versions of each updated method were manually com-
pared and any dependencies removed were noted. Each
preceding version of the method was examined until the
most recent version to add one of the dependencies was
found. If a fix involved multiple methods this was done
for each and the most recent version to have altered any
of them was recorded as the single result.

If no dependencies were removed in any method then
any added dependencies were noted. Each preceding

Table I
Count of Commits by Classification of Origin

Eclipse Rachota
Single 161 88

Multiple 19 21
Related 57 6

Elsewhere 6 1
Unrelated 38 14

Unclear 20 0
Total 301 130



version of the method was then examined in a similar
manner, searching for the most recent version to alter
either the source or target of the dependency.

The graph comparison of the dependency approach
requires lines to be mapped between versions. This
mapping was based on the similarity of the two lines
and the lines surrounding them. Generally this was
straightforward but any ambiguities were recorded and
re-examined at the end in order to ensure that similar
cases were treated in the same manner. Specifically,
changes to an object’s type or the addition or removal
of a method in a chain of method calls were regarded
as the two lines not mapping to one another. Changes
that were made to the condition of an if statement were
regarded as the lines mapping to one another.

Only dependencies on other lines within the same
method were considered; dependencies on other methods
and on any fields were ignored. In addition if the name
of a method was altered during the fix this was treated
as one method being added and another removed; no
attempt was made to trace the dependencies. These
behaviours, and the line mapping technique, attempt to
match the original description [4] as closely as possible,
but are explored further in Section IV.

As the dependency approach works by first mapping
different versions of a method to one another based on
their signature, it was assumed that it could handle
methods being relocated inside a class, as happened
with Eclipse Bug 81695. Because the text approach
implementation relies on tools based on line numbers,
it was assumed that it could not cope with this.

For each approach the predicted origins were com-
pared to the manually identified origins. The predictions
that the approach made correctly were recorded as true
positives (TP). False positives (FP), versions that the
approach predicted but which were not correct, and false
negatives (FN), origins which were manually determined
but the approach did not predict, were also recorded.

D. Results

Table II shows the results obtained by the text ap-
proach (TA) and dependency approach (DA). In order
to help compare the performance of each the commonly
used measures of precision (P) and recall (R) are also
shown, along with their harmonic mean F1-Score (F). As
can be seen, for Eclipse the text approach identifies more
correct versions than the dependency approach. However
the text approach also generates a much larger number of
false positives, as it can return multiple origins for each
commit while the dependency approach only returns a
single origin. As to be expected from the lower number of
false positives, the precision of the dependency approach
is higher, although the recall is lower.

Table II
Overall Results

TP FP FN P R F
Eclipse TA 91 220 100 0.29 0.48 0.36

DA 77 98 114 0.44 0.40 0.42
Rachota TA 89 39 38 0.70 0.70 0.70

DA 85 23 42 0.79 0.67 0.72

A similar pattern is seen for Rachota but the propor-
tion of false positives compared to true positives is vastly
reduced compared to Eclipse. This may be because of the
relative simplicity of changes in Rachota. The bugs, and
their fixes, often seemed simpler than those in Eclipse
and there were often fewer versions between the origin
of the bug and the fix. Unsurprisingly, given the smaller
number of false positives, the precision and recall for
Rachota are higher than for Eclipse.

IV. Analysis

A. Successful Results

The approaches successfully found origins for a variety
of different types of bug. Of the 68 bugs in Eclipse
for which at least one origin was successfully identified,
around a third resulted in exceptions that either crashed
the application, displayed an error to the user or ap-
peared in logs. However bugs in other areas were also
successfully identified:

UI Bug 63753 — Checkbox being ignored
Tests Bug 74229 — Failing automated tests
Code Reviews Bug 57670 — Wrong subclass of In-

putStream was being used
Performance Bug 64531 — Find/Replace operation

using 100% CPU

There was a similar diversity of bugs identified in
Rachota, although there was a greater proportion of
user interface bugs and incorrect output rather than
exceptions. Overall the approaches did not seem to be
more or less effective for any particular type of bug; their
effectiveness appeared to depend more on the type of
changes being made and on changes made at the same
time or in intervening versions. This is explored in more
depth in Section IV-E.

In general the approaches performed best when there
were fewer versions between the origin and the fix,
but there were exceptions. Eclipse Bug 49561 involved
certain operations locking the entire workspace and re-
quired changes to numerous files to fix. One of the fixes
was version 1.156 of CompilationUnit.java, which had
multiple instances of the bug. The text approach cor-
rectly identified the origins of this bug even though one
was introduced in version 1.98, 58 versions before, and
the other was 155 versions earlier in the initial version.

There were a number of origins only identified
by the text approach. Often these included changes



to literal values or to formulas. For example, Bug
64531, where Eclipse would hang utilising all of the
machine’s CPU, was solved by changing a single
line from findReplacePosition = selection.x; to
findReplacePosition = selection.x - 1;. This had
no effect on dependencies but was correctly identified by
the text approach. Changes sometimes also altered lines
more significantly without altering dependencies. Eclipse
Bug 51593 was an exception thrown in the background
during particular operations. The fix was to add a check
on the length of an array, but to an if statement
that was already checking whether the array was null.
Therefore the dependencies were unaltered although the
text approach could correctly identify the origin.

Conversely the dependency approach returned some
origins the text approach could not, particularly those
with added lines. Eclipse Bug 60246 was an exception
caused by trying to create two classes with the same
name in different cases. The fix involved adding an
else block to a series of if-else statements. The
dependency approach correctly traced this back to when
the statements were added but the text approach could
not identify any changes. The dependency approach
also appeared to better handle unrelated changes in
the intervening versions, such as in Eclipse Bug 63519.
This was fixed by removing a check on a variable in an
if statement but as the method had been moved in a
previous version the text approach returned that version.
The dependency approach is specifically designed to take
this into account and so correctly returned the origin.

B. Type of Origin

Table III shows a more detailed view of how the
various types of origin affect the the two approaches.
As shown, the text approach produced more false pos-
itives than the dependency approach across every type
of origin. However, as expected, it correctly identified
the origins classed as Multiple more often than the
dependency approach.

The results also show the existence of false positives
for commits classed as Elsewhere. These bugs have no
origin within the file that was fixed, and as both ap-
proaches look solely in that file it is unclear whether
the origins of these bugs could ever be discovered by
either. It may be possible for an interprocedural version
of the dependency approach to identify the origin, but to
compare the dependencies of an entire project is a daunt-
ing task. Other bugs could potentially be introduced by
changes to the external environment or to libraries, and
these origins may be impossible to discover.

The results also show that a significant proportion of
false positives occurred for commits with no origin: those
classed as Related or Unrelated. In these cases, any result
returned was a false positive; ideally the approaches

Table III
Results by origin (Eclipse)

TA DA
TP FP FN TP FP FN

Single 79 75 82 73 41 88
Multiple 12 5 18 4 4 26
Related 0 88 0 0 29 0

Elsewhere 0 10 0 0 4 0
Unrelated 0 42 0 0 20 0

should return nothing at all. It is not clear that either
approach could ever be updated to identify such files and
ignore them. Separating the files that were changed to fix
a bug from the files that were changed as a consequence
of the fix may not be possible without knowing the
developers’ intentions.

C. False Negatives

One obvious weakness is the large number of false
negatives returned by each approach. In a very small
minority of cases these occurred when a bug had multiple
origins of which the approaches only identified some, but
for 70 commits in Eclipse classed as Single or Multiple
the text approach returned nothing at all. As stated
earlier, this was usually due to fixes which only involved
lines being added. For the dependency approach the
equivalent figure was 58 commits, where the fix usually
contained no changed dependencies.

The original authors proposed that in the cases where
the dependency approach found no altered dependencies
it would fall back to using the text approach [4]. How-
ever, this could equally be applied in the other direction,
with the text approach given first preference. In fact this
may well be preferable due to the extra computational ef-
fort required for the dependency approach. The original
paper reported the dependency approach to take around
7.2 times as long as the text approach on average, in the
worst case taking over 12 hours to analyse 129 fixing
commits where the text approach took around 1 hour.

A technique of using both strategies may well be
viable. The most common result was for the two ap-
proaches to return the same outcome. However, in a
significant number of cases one approach identified the
correct version while the other did not, as already dis-
cussed. Obviously however it is also possible for one
approach to return the incorrect answer where the other
returned nothing.

Table IV shows the effect of returning the result
of the second approach if the first approach returns
nothing. For both Eclipse and Rachota the change to
the dependency approach is the same: a slight increase
in both true and false positives, with a corresponding rise
in recall but drop in precision. The change for the text
approach is more pronounced however, increasing both
precision and recall. The difference in F1-Score between



Table IV
Combining Approaches

TP FP FN P R F
Eclipse TA 91 220 100 0.29 0.48 0.36

TA,DA 116 231 75 0.33 0.61 0.43
DA 77 98 114 0.44 0.40 0.42

DA,TA 96 127 95 0.43 0.50 0.46
Rachota TA 89 39 38 0.70 0.70 0.70

TA,DA 109 43 18 0.72 0.86 0.78
DA 85 23 42 0.79 0.67 0.72

DA,TA 95 34 32 0.74 0.75 0.74

the approaches has now reduced, and in fact for Rachota
applying the text approach first gives the highest value.
Given the potential time saving and the similarity in
effectiveness, using the text approach first could benefit
some applications.

For the dependency approach, another way to reduce
the number of cases where nothing is returned would be
to assess dependencies on external objects. For example,
the fix for Eclipse Bug 63753 changed which static
constant a line of code depended on. The dependency
approach therefore saw these dependencies as unchanged
and returned nothing. Adding these dependencies in,
or implementing the full interprocedural dependency
approach, would have allowed this origin to be correctly
identified. It is not clear however how many bugs would
be affected this way and there may be bugs where doing
so would cause the wrong version to be returned.

D. False Positives

A significant proportion of the responses for the text
approach were false positives. While most occurred when
the approach could not identify the correct answer, a
total of 41 false positives occurred where the approach
identified the correct version along with one or more false
positives, shown by the highlighted cells in Table V. In
addition, the bold cells show the large number of cases
where more than one false positive occurred, for a total
of 164 false positives.

One technique to reduce the number of these responses
would be to return a single version, similar to the depen-
dency approach. Doing so would reduce the maximum
possible number of false positives per commit to one,
and would hopefully also result in discarding the false
positive in favour of the true positive. Two ways to do so

Table V
Commits Classified by Number of True and False Positives

for Text Approach (Eclipse)

FP 0 1 2 3 4 5 6
TP

0 98 44 25 12 7 3 1
1 59 11 6 4 0 1 0
2 4 1 0 0 0 0 0

are to return the most recent version in which anything
changed or to return the version in which the majority
of the lines last changed.

Table VI shows the effect of such a change. As shown
the false positives have decreased significantly. Unfor-
tunately, the true positives have also decreased, as the
approach no longer returns some of the correct versions
it previously would have. This is especially true for bugs
classed as Multiple, where it is no longer possible to
correctly identify all of the origins. However, selecting
the version in which most lines were last changed does
significantly increase the precision at the cost of a smaller
decrease in recall. Selecting the most recent version is
similar but for a lesser benefit and larger downside.

E. Unrelated Changes

False positives were often introduced when unrelated
changes were made coincident to the fix. For example,
version 1.32 of AntModel.java, part of the fix for Eclipse
Bug 52040, was a straightforward update that both
approaches could have handled correctly. However Bug
51347 was also fixed at the same time, altering many
other lines. The approaches could not distinguish which
lines were relevant to which bug and so returned the
incorrect answer. In total there were 34 fixes containing
unrelated changes, of which 20 fixed multiple bugs. An
automated tool could potentially ignore these commits
by checking the commit message for multiple bug IDs.
Unfortunately 13 of these commits were for a bug that
was classed as Unclear and the remaining sample did
not allow conclusions to be drawn about such a change.

Similarly both approaches had problems identifying
the correct origin when unrelated changes were made
between the origin of the bug and the fix. Eclipse Bug
49891 was a simple fix to avoid a NullPointerExcep-

tion. However during one previous release the return
type of the method had changed and a cast had been
altered on the line involved. Both approaches therefore
returned this version as the source of the bug. Unfortu-
nately there is not in general an easy way to adapt for
such cases, as the same scenario of a cast being changed
could conceivably be the source of a bug.

One situation where this could be improved is where
multiple commits are made to fix a bug, often because
the first attempt was incorrect. For example three ver-
sions of LaunchView.java were linked to Eclipse Bug
61928. When evaluating the later versions the earlier fix

Table VI
Returning Single Version for Text Approach (Eclipse)

TP FP FN P R F
TA 91 220 100 0.29 0.48 0.36

Majority of Lines 75 103 116 0.42 0.39 0.41
Most Recent 66 112 125 0.37 0.35 0.36



attempts were incorrectly returned as the origin of the
bug. While in some senses this could be considered the
origin of a bug, as the fix was buggy, it was not the origin
of the bug being examined. One improvement would be
to ignore changes made in versions that were linked to
the bug, other than the latest. This is in effect similar to
the suggested improvement to remove all versions after
the bug was raised as possible origins [2].

Possibly due to the increased chance of unrelated
changes, the approaches tended to get less effective as the
time between the bug being introduced and being fixed
increased. Fig. 4 shows the effects on F if fixes more than
a given number of versions after the origin were to be
ignored. Larger values have been omitted from the chart
as the values remain largely stable, but the maximum
difference between a bug being introduced and being
found in Eclipse was 267 versions. Note that these figures
only include bugs for which an origin actually existed so
will not correspond with those given earlier in Table II.

Fig. 4 also illustrates that bugs were often fixed shortly
after being introduced. For Eclipse, 12.8% of bugs were
fixed within 1 version after the bug was introduced with
50% of bugs being fixed within 12 versions.

F. Large Commits

As bug fixes increased in size the approaches became
less likely to identify the correct origins. Fixing Eclipse
Bug 61706 required changing commonly-used construc-
tors and methods resulting in changes to 24 files. Only 4
of these directly related to the bug; the remainder were
classed as Related or Unrelated based on whether they
were involved in the bug. Both cases led to a number of
false positives. This distribution was repeated on other
large bugs and one proposal is to ignore fixes that change
a large number of files [2]. The number of bugs of each

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Maximum Number Of Versions Since Introduction

F
−

S
co

re

●

●

●

●

●
●

● ● ● ● ●

●

TA
DA
Overall Proportion of Commits

Figure 4. Age of Origin (Eclipse)

Table VII
Number of Files Per Bug (Eclipse)

Number of Bugs Number of Bugs
1 55 7 3
2 16 10 2
3 7 13 1
4 4 21 1
5 5 22 1
6 1 24 1

size in Eclipse is shown in Table VII.
Fig. 5 illustrates F if bugs with more than the given

number of commits were to be ignored. Similar trends
are present for P and R. As seen here, the vast majority
of bugs were small and the scores are significantly better
for smaller commits. For the few larger bugs the scores
decrease. The same was not necessarily true of Rachota
however; there the largest bugs were smaller and the
scores stayed largely constant.

Given the results for Eclipse, ignoring bugs with
more than a certain number of commits may increase
effectiveness without reducing applicability significantly.
This might be appropriate for some use cases but further
study would be needed to determine a threshold and it
is likely this may vary by project.

G. Line Mapping

The original dependency approach stated that identi-
fying which line in one PDG was the same as which line
in the previous PDG could be performed by any of sev-
eral techniques. However, it became apparent through-
out this work that how this mapping is done could have
a significant impact on the results gained. Eclipse Bug
51593, detailed earlier, involved adding a new predicate
to an existing if statement, but this predicate depended
on a variable already referenced in the if statement. The

0 5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Maximum Commits Per Bug

F
−

S
co

re

●

●

●

●

● ● ●

●

●●

●

TA
DA
Overall Proportion of Commits

Figure 5. Performance of Different Sized Fixes (Eclipse)



dependency approach regards this as being the same line
of code in both versions with no change in dependencies.
As such, it returned nothing for this instance. If however
the mapping algorithm used had said these lines were
different then an entire node would have been removed
from the PDG and a new one added. The removal of the
old node and its corresponding dependencies would have
caused the approach to behave completely differently.

The approach would also behave differently if the
PDGs were built from individual statements, or clauses,
rather than lines. Another aspect to take into con-
sideration is that the approach only examines added
dependencies if there were no removed dependencies,
which may not always be appropriate. Whether altering
any of these parameters would result in the approach
becoming more or less effective has not been evaluated.

H. Other Issues

A number of other issues were also identified.

• One Rachota bug was fixed in a plain text file, which
the text approach could have identified. However
the majority of changes to text files were not related
to bugs. Including text files would have introduced
83 false positives but only 4 true positives.

• Although Eclipse issues marked as enhancement
were excluded, a number of issues remained that
could still be seen as enhancements. In general,
both approaches performed poorly on these. Their
effectiveness may vary if issues are classified more
accurately, possibly automatically [7].

• Two Eclipse bugs were specifically related to errors
in comments. The text approach could have cor-
rectly identified the origin if changes to comments
were taken into account but this would have created
false positives elsewhere. Some projects may wish
to identify the origin of such bugs, or of formatting
errors and coding standard violations. This creates
a trade-off between accepting false positives and
correctly handling such bugs.

V. Threats to Validity

The evaluation has several potential shortcomings, of
which the most major is the possibility of error. In
particular the dependency approach could be difficult to
visualise, especially regarding constructs such as fields,
synchronized blocks or try-catch blocks, as the origi-
nal paper did not discuss how these were handled. To
maintain consistency related scenarios were noted as
they were encountered and then revisited as a group.

There may also have been errors when determining the
correct origin for each bug, especially as the evaluation
was not carried out by a developer of the projects being
studied. While this risk could not be avoided altogether,
related or similar commits were noted and then revisited

at the end to ensure consistency. Where possible commit
logs and bug report comments were also used to give an
indication of the origin.

The work only ever looked to find an origin in the
file where the fix was applied. However as discussed the
origin to a bug sometimes lay elsewhere. The evalua-
tion technique used is partially due to the underlying
SCM, CVS, which considers each file in a commit as a
separate transaction. One possibility may be to repeat
this evaluation for projects that use other SCMs which
assign version numbers to the entire project, or to use
techniques that reconstruct project versions [8].

A particular problem is that, due to the time-
consuming nature of the work, only a small sample
was studied and the results may not generalise to other
systems. There may have been particular factors that
influenced the results. As only bugs that could be linked
to a fixing commit were examined they may in fact not
even be representative of all bugs in the two systems
[9]. Future studies would be needed to determine if
these results are applicable to other projects. This work
however can be used as a data set for better evaluation of
the actual implemented techniques, and as a framework
for future studies.

VI. Related Work

Several improvements have been suggested to the
approaches. Williams and Spacco [10] built on the text
approach using a Java-syntax aware differencing tool,
DiffJ, to eliminate changes that have no semantic effect
and developed the concept of line mapping [2] further.
Jung et al. [11] detailed common patterns that can
identify individual changes within a fixing commit which
were not involved in the fix and proposed a tool for
automatically detecting such patterns. The approaches
also bear some resemblance to the concept of iterative
delta debugging [12], where failing test cases from a later
version of code are used repeatedly on earlier versions in
order to identify the last version where the test passed.

Many studies have been carried out that attempt to
examine and categorise bugs. The most relevant to this
work have studied the actual cause of bugs [13]–[15],
although they did not seek to find the originating version
of code. Chou et al. [16] examined errors in versions of
Linux, finding the median difference between the origin
and fix of a bug to be around 1.25 years.

A number of practical tools have been built on top of
the text approach. HATARI [17] determines how risky an
area of source code is based on the proportion of changes
made to that area which introduced a bug. Similarly
FixCache [18] uses a cache of elements that recently
introduced a bug to predict how likely changing an area
is to cause another bug.



VII. Conclusions

This paper has manually classified the origins of 166
bugs and compared the results to two approaches for
identifying the origins of fixed bugs: the text approach
and dependency approach. It has evaluated these ap-
proaches and found that they individually achieved a
precision of 29%–79% and a recall of 40%–70%, suggest-
ing they are at least partially successful.

The current precision and recall seems reasonable for
some applications. Which system is more appropriate to
implement is most likely a product of the time available
for implementation and the willingness to accept false
positives. Some amount of false positives may be accept-
able if the approaches were to be used by developers and
managers tracking their own bugs. Some of the variations
described earlier could be built into the system and left
to the user to choose whether to adopt or not.

If however the approaches were to be used for re-
searching the life cycle of bugs they may not be effec-
tive enough. While the variations discussed above could
improve either precision or recall, they may do so at the
cost of the other. Additionally some variations would
result in certain bugs being ignored, for example those
which changed a large number of files, and this may
introduce bias into the findings. Care would have to be
taken before adopting these approaches in research.

The results found also indicated that:

• The accuracy of using both approaches together was
at least as good as, and mostly better than, using
either on their own

• Both approaches often gave incorrect answers when
other changes were made coincident to the fix.
How diligently a project separates fixes from other
changes may influence the approaches’ effectiveness

• Unrelated changes made between the origin and the
fix often caused incorrect results

• The approaches became less accurate as more ver-
sions passed between the origin and the fix, al-
though most bugs were fixed soon after their origin

• Most bugs required changes to only a few files, but
bugs which required many changes could often not
be classified correctly

At the very least, this paper proposes that further
evaluation of these approaches is merited, particularly
with a larger range of projects, in order to see if these
findings are generally applicable and whether the pro-
posed variations could improve effectiveness. Developing
these approaches further could help significantly with
accurately identifying the origin of bugs, and lead to a
better understanding of their life cycle.

Acknowledgments

This work was supported by the Engineering and
Physical Sciences Research Council [grant number

EP/P505747/1]. We would like to thank the anonymous
reviewers for their constructive comments.

References

[1] T. D. LaToza, G. Venolia, and R. DeLine, “Maintaining
Mental Models : A Study of Developer Work Habits,” in
Proc. ICSE, 2006, pp. 492–501.

[2] S. Kim, T. Zimmermann, K. Pan, and E. J. White-
head Jr., “Automatic Identification of Bug-Introducing
Changes,” in Proc. ASE, 2006, pp. 81–90.

[3] J. Śliwerski, T. Zimmermann, and A. Zeller, “When do
changes induce fixes?” in Proc. MSR, 2005.

[4] V. S. Sinha, S. Sinha, and S. Rao, “BUGINNINGS:
identifying the origins of a bug,” in Proc. ISEC, 2010,
pp. 3–12.

[5] C. S. Corley, N. A. Kraft, L. H. Etzkorn, and S. K.
Lukins, “Recovering traceability links between source
code and fixed bugs via patch analysis,” in Proc. TEFSE,
2011, pp. 31–37.

[6] G. Boetticher, T. Menzies, and T. Ostrand.
(2007) PROMISE Repository of empirical software
engineering data. West Virginia University, De-
partment of Computer Science. [Online]. Available:
http://promisedata.org/?p=17

[7] G. Antoniol, K. Ayari, M. Di Penta, F. Khomh, and
Y.-G. Guéhéneuc, “Is it a Bug or an Enhancement? A
Text-based Approach to Classify Change Requests,” in
Proc. CASCON, 2008.

[8] T. Zimmermann, P. Weißgerber, S. Diehl, and A. Zeller,
“Mining version histories to guide software changes,”
IEEE Trans. Softw. Eng., vol. 31, no. 6, pp. 429–445,
June 2005.

[9] C. Bird, A. Bachmann, E. Aune, J. Duffy, A. Bernstein,
V. Filkov, and P. Devanbu, “Fair and Balanced?: Bias in
Bug-Fix Datasets,” in Proc. ESEC/FSE, 2009, pp. 121–
130.

[10] C. C. Williams and J. Spacco, “SZZ revisited: verifying
when changes induce fixes,” in Proc. DEFECTS, 2008,
pp. 32–36.

[11] Y. Jung, H. Oh, and K. Yi, “Identifying static analysis
techniques for finding non-fix hunks in fix revisions,” in
Proc. DSMM, 2009, pp. 13—-18.

[12] C. Artho, “Iterative delta debugging,” LNCS, vol. 5394,
pp. 99–113, March 2009.

[13] A. Endres, “An analysis of errors and their causes in
system programs,” ACM SIGPLAN Notices, vol. 10,
no. 6, pp. 327–336, June 1975.

[14] V. R. Basili and B. T. Perricone, “Software errors and
complexity: an empirical investigation,”CACM, vol. 27,
no. 1, pp. 42–52, January 1984.

[15] M. Sullivan and R. Chillarege,“A comparison of software
defects in database management systems and operating
systems,” in FTCS-22. Digest of Papers., 1992, pp. 475–
484.

[16] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler,
“An empirical study of operating systems errors,” in
Proc. SOSP, vol. 35, no. 5, October 2001, pp. 73—-88.

[17] T. Zimmermann and A. Zeller, “HATARI: Raising Risk
Awareness,” in Proc. ESEC/FSE, 2005, pp. 107–110.

[18] S. Kim, T. Zimmermann, E. J. Whitehead Jr., and
A. Zeller, “Predicting Faults from Cached History,” in
Proc. ICSE, May 2007, pp. 489–498.


