Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Alternation graphs

Halldorsson, Magnus and Kitaev, Sergey and Pyatkin, Artem (2011) Alternation graphs. In: Graph-theoretic concepts in computer science. Lecture Notes in Computer Science . Springer-Verlag Berlin, Berlin, pp. 191-202. ISBN 9783642258695

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

A graph G = (V,E) is an alternation graph if there exists a word W over the alphabet V such that letters x and y alternate in W if and only if (x,y) ∈ E for each x ≠ y. In this paper we give an effective characterization of alternation graphs in terms of orientations. Namely, we show that a graph is an alternation graph if and only if it admits a semi-transitive orientation defined in the paper. This allows us to prove a number of results about alternation graphs, in particular showing that the recognition problem is in NP, and that alternation graphs include all 3-colorable graphs. We also explore bounds on the size of the word representation of the graph. A graph G is a k-alternation graph if it is represented by a word in which each letter occurs exactly k times; the alternation number of G is the minimum k for which G is a k-alternation graph. We show that the alternation number is always at most n, while there exist graphs for which it is n/2.