Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Enumerating (2+2) -free posets by the number of minimal elements and other statistics

Kitaev, Sergey and Remmel, Jeffrey (2011) Enumerating (2+2) -free posets by the number of minimal elements and other statistics. Discrete Mathematics, 159 (17). 2098 - 2108.

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

An unlabeled poset is said to be -free if it does not contain an induced subposet that is isomorphic to , the union of two disjoint 2-element chains. Let pn denote the number of -free posets of size n. In a recent paper, Bousquet-Mélou et al. [1] found, using the so called ascent sequences, the generating function for the number of -free posets of size n: . We extend this result in two ways. First, we find the generating function for -free posets when four statistics are taken into account, one of which is the number of minimal elements in a poset. Second, we show that if pn,k equals the number of -free posets of size n with k minimal elements, then . The second result cannot be derived from the first one by a substitution. Our enumeration results are extended to certain restricted permutations and to regular linearized chord diagrams through bijections in [1] and [2]. Finally, we define a subset of ascent sequences counted by the Catalan numbers and we discuss its relations with - and -free posets. An unlabeled poset is said to be -free if it does not contain an induced subposet that is isomorphic to , the union of two disjoint 2-element chains. Let pn denote the number of -free posets of size n. In a recent paper, Bousquet-Mélou et al. [1] found, using the so called ascent sequences, the generating function for the number of -free posets of size n: . We extend this result in two ways. First, we find the generating function for -free posets when four statistics are taken into account, one of which is the number of minimal elements in a poset. Second, we show that if pn,k equals the number of -free posets of size n with k minimal elements, then . The second result cannot be derived from the first one by a substitution. Our enumeration results are extended to certain restricted permutations and to regular linearized chord diagrams through bijections in [1] and [2]. Finally, we define a subset of ascent sequences counted by the Catalan numbers and we discuss its relations with - and -free posets. An unlabeled poset is said to be -free if it does not contain an induced subposet that is isomorphic to , the union of two disjoint 2-element chains. Let pn denote the number of -free posets of size n. In a recent paper, Bousquet-Mélou et al. [1] found, using the so called ascent sequences, the generating function for the number of -free posets of size n: . We extend this result in two ways. First, we find the generating function for -free posets when four statistics are taken into account, one of which is the number of minimal elements in a poset. Second, we show that if pn,k equals the number of -free posets of size n with k minimal elements, then . The second result cannot be derived from the first one by a substitution. Our enumeration results are extended to certain restricted permutations and to regular linearized chord diagrams through bijections in [1] and [2]. Finally, we define a subset of ascent sequences counted by the Catalan numbers and we discuss its relations with - and -free posets. An unlabeled poset is said to be -free if it does not contain an induced subposet that is isomorphic to , the union of two disjoint 2-element chains. Let pn denote the number of -free posets of size n. In a recent paper, Bousquet-Mélou et al. [1] found, using the so called ascent sequences, the generating function for the number of -free posets of size n: . We extend this result in two ways. First, we find the generating function for -free posets when four statistics are taken into account, one of which is the number of minimal elements in a poset. Second, we show that if pn,k equals the number of -free posets of size n with k minimal elements, then . The second result cannot be derived from the first one by a substitution. Our enumeration results are extended to certain restricted permutations and to regular linearized chord diagrams through bijections in [1] and [2]. Finally, we define a subset of ascent sequences counted by the Catalan numbers and we discuss its relations with - and -free posets. An unlabeled poset is said to be -free if it does not contain an induced subposet that is isomorphic to , the union of two disjoint 2-element chains. Let pn denote the number of -free posets of size n. In a recent paper, Bousquet-Mélou et al. [1] found, using the so called ascent sequences, the generating function for the number of -free posets of size n: . We extend this result in two ways. First, we find the generating function for -free posets when four statistics are taken into account, one of which is the number of minimal elements in a poset. Second, we show that if pn,k equals the number of -free posets of size n with k minimal elements, then . The second result cannot be derived from the first one by a substitution. Our enumeration results are extended to certain restricted permutations and to regular linearized chord diagrams through bijections in [1] and [2]. Finally, we define a subset of ascent sequences counted by the Catalan numbers and we discuss its relations with - and -free posets. An unlabeled poset is said to be -free if it does not contain an induced subposet that is isomorphic to , the union of two disjoint 2-element chains. Let pn denote the number of -free posets of size n. In a recent paper, Bousquet-Mélou et al. [1] found, using the so called ascent sequences, the generating function for the number of -free posets of size n: . We extend this result in two ways. First, we find the generating function for -free posets when four statistics are taken into account, one of which is the number of minimal elements in a poset. Second, we show that if pn,k equals the number of -free posets of size n with k minimal elements, then . The second result cannot be derived from the first one by a substitution. Our enumeration results are extended to certain restricted permutations and to regular linearized chord diagrams through bijections in [1] and [2]. Finally, we define a subset of ascent sequences counted by the Catalan numbers and we discuss its relations with - and -free posets.