Strathprints Home | Open Access | Browse | Search | User area | Copyright | Help | Library Home | SUPrimo

Mesh patterns and the expansion of permutation statistics as sums of permutation patterns

Brändén, Petter and Claesson, Anders (2011) Mesh patterns and the expansion of permutation statistics as sums of permutation patterns. The Electronic Journal of Combinatorics, 18 (2).

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Any permutation statistic ƒ : S → C may be represented uniquely as a, possibly infinite, linear combination of (classical) permutation patterns: ƒ= ∑rλƒ (τ ) τ. To provide explicit expansions for certain statistics, we introduce a new type of permutation patterns that we call mesh patterns. Intuitively, an occurrence of the mesh pattern p = (π,R) is an occurrence of the permutation pattern with additional restrictions specified by R on the relative position of the entries of the occurrence. We show that, for any mesh pattern p = (π,R), we have λp(τ ) = (−1)|τ|−|π|p⋆( ) where p⋆ = (π,Rc) is the mesh pattern with the same underlying permutation as p but with complementary restrictions. We use this result to expand some well known permutation statistics, such as the number of left-to-right maxima, descents, excedances, fixed points, strong fixed points, and the major index. We also show that alternating permutations, André permutations of the first kind and simsun permutations occur naturally as permutations avoiding certain mesh patterns. Finally, we provide new natural Mahonian statistics.

Item type: Article
ID code: 34553
Keywords: permutation statistics, mesh patterns, André permutations, simsun permutations, Mahonian statistics, Probabilities. Mathematical statistics
Subjects: Science > Mathematics > Probabilities. Mathematical statistics
Department: Faculty of Science > Computer and Information Sciences
Related URLs:
Depositing user: Pure Administrator
Date Deposited: 13 Oct 2011 19:59
Last modified: 14 Dec 2012 16:03
URI: http://strathprints.strath.ac.uk/id/eprint/34553

Actions (login required)

View Item