Strathprints Home | Open Access | Browse | Search | User area | Copyright | Help | Library Home | SUPrimo

Studies on gas permeation performance of asymmetric polysulfone hollow fiber mixed matrix membranes using nanosized fumed silica as fillers

Wahab, M.F.A. and Ismail, A.F. and Shilton, Simon James (2012) Studies on gas permeation performance of asymmetric polysulfone hollow fiber mixed matrix membranes using nanosized fumed silica as fillers. Separation and Purification Technology, 86. pp. 41-48. ISSN 1383-5866

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

This study investigated the use of nanosized fumed silica (Aerosil® R106) as fillers in the production of asymmetric hollow fiber mixed matrix membrane (HFMMM) where polysulfone was the host polymer matrix. The presence of fumed silica particles were found to stimulate the flow of CO2 as indicated by an increase (>12%) in CO2 permeability for all HFMMMs. At low loading of 0.1(w/w)%, the permeability of CO2 and CH4 were 90.04 GPU and 2.75 GPU respectively and the calculated selectivity was higher than the neat PSf hollow fiber membrane. At higher loading of 10 (w/w)%, the FESEM images of the HFMMM showed severe agglomeration of fillers that contributed to nanometric defects between the aggregates, leading to higher permeation of slow gases (CH4 and N2). Hence, the selectivities of CO2/CH4 and O2/N2 were low at 7.43 and 2.02 respectively. The calculation of particle spacing within the polymer macromolecules have shown that for nanoparticles, the agglomeration was unavoidable at high loading due to sheer number of particles within the matrix. At low loading of 0.1%, the polysulfone-fumed silica HFMMM showed no visible sign of particle agglomeration. The selectivities of CO2/CH4 and O2/N2 significantly improved with an average value of 32.74 and 6.35 respectively. The HFMMM also showed an increase in glass transition temperature and has a better thermal stability as measured by DSC and TGA analyzers respectively. The importance of filler-filler, polymer-filler and filler-gas interactions on the characteristic and permeation performance of HFMMMs are also discussed.

Item type: Article
ID code: 34529
Keywords: gas separation membrane, hollow fiber, mixed matrix membrane, fumed silica, nanosized filler, Chemical engineering, Filtration and Separation, Analytical Chemistry
Subjects: Technology > Chemical engineering
Department: Faculty of Engineering > Chemical and Process Engineering
Related URLs:
    Depositing user: Pure Administrator
    Date Deposited: 26 Oct 2011 11:31
    Last modified: 25 Apr 2014 05:07
    URI: http://strathprints.strath.ac.uk/id/eprint/34529

    Actions (login required)

    View Item