Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Synthesis, characterisation and a theoretical investigation of the formation of lithium dialkylaluminium amides

Clegg, W and Liddle, S T and Henderson, K W and Keenan, F E and Kennedy, A R and McKeown, A E and Mulvey, R E (1999) Synthesis, characterisation and a theoretical investigation of the formation of lithium dialkylaluminium amides. Journal of Organometallic Chemistry, 572 (2). pp. 283-289. ISSN 0022-328X

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Reaction of the pre-formed crystalline amides [(PhCH2)(2)NLi] and [Me2AlN(CH2Ph)(2)] in the presence of pyridine results in the formation of the mixed metal complex [Me2Al{(PhCH2)(2)N}(2)Li . pyr] 1. Ab initio molecular orbital calculations indicate formation of the bimetallic product is energetically favourable. Using single crystal X-ray analysis for 1 and the pyridine solvate [{(PhCH2)(2)NLi . pyr}(2)] 7, in combination with theoretical calculations, the possible driving forces for the reaction are discussed. A major contributing factor in the stabilisation of the bimetallic compound was found to be a reduction in steric crowding in the mixed metal base compared to the homometallic dialkylaluminium amide. In addition, complex 1 shows significant benzyl to lithium interactions which contribute to the overall bonding. Such interactions are unusual in that donor solvent is present as competing complexant.