Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Poly(vinyl chloride) (PVC) hollow fibre membranes for gas separation

Jones, C.A. and Gordeyev, S.A. and Shilton, S.J. (2011) Poly(vinyl chloride) (PVC) hollow fibre membranes for gas separation. Polymer, 52 (4). pp. 901-903. ISSN 0032-3861

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Poly(vinyl chloride) (PVC) gas separation hollow fibre membranes were produced from multicomponent dopes using dry/wet forced convection spinning. Membranes spun from a low polymer content solution exhibited disappointing gas separation properties. Their low selectivities were indicative of thick skins and high surface porosities. In contrast, high polymer content spun fibres showed good gas separation properties. Selectivities were high, active layers relatively thin and surface porosities moderate. Coating with poly(dimethylsiloxane) nullified the surface pores. The favourable performance of the high polymer content spun fibres was also related to shear rate and forced convection residence time during spinning. To the knowledge of the authors, this work represents the first reported success in producing PVC hollow fibre membranes with morphologies suitable for gas separation. The development of PVC hollow fibres relates to the ultimate quest to produce membranes capable of reliably separating oxygen and ozone gas mixtures.