Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Poly(vinyl chloride) (PVC) hollow fibre membranes for gas separation

Jones, C.A. and Gordeyev, S.A. and Shilton, S.J. (2011) Poly(vinyl chloride) (PVC) hollow fibre membranes for gas separation. Polymer, 52 (4). pp. 901-903. ISSN 0032-3861

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Poly(vinyl chloride) (PVC) gas separation hollow fibre membranes were produced from multicomponent dopes using dry/wet forced convection spinning. Membranes spun from a low polymer content solution exhibited disappointing gas separation properties. Their low selectivities were indicative of thick skins and high surface porosities. In contrast, high polymer content spun fibres showed good gas separation properties. Selectivities were high, active layers relatively thin and surface porosities moderate. Coating with poly(dimethylsiloxane) nullified the surface pores. The favourable performance of the high polymer content spun fibres was also related to shear rate and forced convection residence time during spinning. To the knowledge of the authors, this work represents the first reported success in producing PVC hollow fibre membranes with morphologies suitable for gas separation. The development of PVC hollow fibres relates to the ultimate quest to produce membranes capable of reliably separating oxygen and ozone gas mixtures.