Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

On the total length of the random minimal directed spanning tree

Penrose, M.D. and Wade, Andrew (2006) On the total length of the random minimal directed spanning tree. Advances in Applied Probability, 38 (2). pp. 336-372. ISSN 0001-8678

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

In Bhatt and Roy's minimal directed spanning tree construction for a random, partially ordered set of points in the unit square, all edges must respect the `coordinatewise' partial order and there must be a directed path from each vertex to a minimal element. We study the asymptotic behaviour of the total length of this graph with power-weighted edges. The limiting distribution is given by the sum of a normal component away from the boundary plus a contribution introduced by the boundary effects, which can be characterized by a fixed-point equation, and is reminiscent of limits arising in the probabilistic analysis of certain algorithms. As the exponent of the power weighting increases, the distribution undergoes a phase transition from the normal contribution being dominant to the boundary effects being dominant. In the critical case in which the weight is simple Euclidean length, both effects contribute significantly to the limit law.