Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Explicit laws of large numbers for random nearest-neighbour-type graphs

Wade, Andrew (2007) Explicit laws of large numbers for random nearest-neighbour-type graphs. Advances in Applied Probability, 39 (2). pp. 326-342. ISSN 0001-8678

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Under the unifying umbrella of a general result of Penrose & Yukich [Ann. Appl. Probab., (2003) 13, 277--303] we give laws of large numbers (in the Lp sense) for the total power-weighted length of several nearest-neighbour type graphs on random point sets in Rd, d in N. Some of these results are known; some are new. We give limiting constants explicitly, where previously they have been evaluated in less generality or not at all. The graphs we consider include the k-nearest neighbours graph, the Gabriel graph, the minimal directed spanning forest, and the on-line nearest-neighbour graph.