Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.


Computer simulation of erosion-corrosion interactions at elevated temperatures

Stack, Margaret and Song-Roehrle, Q. and Stott, F.H. and Wood, G.C. (1995) Computer simulation of erosion-corrosion interactions at elevated temperatures. Wear, 181-183 (2). pp. 516-523. ISSN 0043-1648

Full text not available in this repository. Request a copy from the Strathclyde author


Although there have been some attempts to model erosion by solid particles at elevated temperatures, there have been few efforts to develop a model which can generate images of the surface morphologies in the various erosion-corrosion regimes. Many classifications of erosion-corrosion regimes have been identified and there is evidence that there are at least three such regimes. The physical significance of the surface in such regimes may be difficult to visualize, particularly when the situation is neither ''erosion-dominated'' (erosion of the substrate) nor ''corrosion-dominated'' (erosion plays a minor role compared with corrosion). The object of this research has been to develop a physical model to simulate the transitions between erosion-corrosion regimes at elevated temperatures. Properties of the particle (shape, size, velocity, hardness, flux), the target (corrosion resistance, hardness, impact angle) and the environment (gas composition and temperature) are considered in the model. The results are then used to construct a computer-generated image of the eroding surface. This paper describes the physical basis of the model and shows how the transitions between the regimes can be achieved by variation of the erosion and corrosion parameters. Typical results are shown and compared with existing erosion-corrosion data. The future development of the research is outlined in terms of the application to other environments in which erosion-corrosion occurs.