Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Interpretation of wastage mechanisms of materials exposed to elevated temperature erosion-corrosion using erosion—corrosion maps and computer graphics

Stack, M.M. and Bray, L. (1995) Interpretation of wastage mechanisms of materials exposed to elevated temperature erosion-corrosion using erosion—corrosion maps and computer graphics. Wear, 186-187 (1). pp. 273-283. ISSN 0043-1648

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

One of the most significant advances in the study of erosion-oxidation and wear in recent years has been the development of theoretical methods to construct maps where the change in erosion or wear mechanism is given as a function of typically two parameters. This approach has important implications for optimization of process parameters in wear and in erosion-corrosion. The direct application of such work is in process engineering where guidelines on the control of parameters to minimize erosion-corrosion are practically non-existent. Although there have been a range of excellent approaches towards the development of erosion-oxidation maps there have been some areas which have not been addressed. Firstly, because erosion-corrosion involves a wide range of parameters, the maps which have been developed to date have only considered the effects of temperature and velocity. In addition, there has been no significant attempt to combine variables on the maps, or incorporate a materials selection parameter on the maps. Finally, there have been few attempts to demonstrate the physical significance of the regimes on the maps, in order to clarify the mechanism of damage on the surface. The object of this research is to address the above areas in the development work on the maps to date. It is shown how the maps can be used to show metal recession as opposed to erosion rates by modifying the regime definitions proposed to date. The relative advantages and limitations of the models developed to date will be discussed.