Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Reactive element effects on the ionic transport processes in Cr2O3 scales

Liu, H. and Stack, M.M. and Lyon, S.B. (1998) Reactive element effects on the ionic transport processes in Cr2O3 scales. Solid State Ionics, 109 (3-4). pp. 247-257. ISSN 0167-2738

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

A study of the ionic and electronic partial conductivity of Cr2O3 scales selectively grown on Ni-20%Cr alloy with and without yttria additions in hydrogen water vapour at 900 degrees C, was carried out by the asymmetry polarisation technique. The results revealed that there were two main regions for the temperature dependence of conductivity in the range 300-900 degrees C. Above 700 degrees C, the Cr2O3 scale was an intrinsic electronic conductor with a corresponding activation energy of 1.7 eV. Below 700 degrees C, the Cr2O3 scale was a mixed ionic and electronic conductor. The activation energy was 0.6eV for electronic conductivity and 0.3 eV for ionic conductivity. The ionic transference number decreased as the temperature or applied voltage increased. The data strongly suggest that the presence of the reactive element in the scale reduces the concentration of mobile species, thus lowering the ionic transport number.