Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

The role of triboparticulates in dry sliding wear

Jiang, Jiaren and Stott, F.H. and Stack, Margaret (1998) The role of triboparticulates in dry sliding wear. Tribology International, 31 (5). pp. 245-256. ISSN 0301-679X

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

In this paper, wear processes and mechanisms for wear transitions with sliding time and temperature during sliding of a nickel-based alloy, N80A, in oxygen at temperatures to 250 degrees C are discussed. Transitions in wear from high rates to low rates with sliding time were always observed at all the temperatures investigated. The transitions in wear were usually accompanied by transitions in contact resistance between the rubbing surfaces from nearly zero to positive high values. It was found that wear debris particles were heavily involved in the wear processes. The transitions in wear and contact resistance with sliding time mainly resulted from the development of wear-protective layers following the compaction of wear debris particles on the rubbing surfaces. The adhesion of triboparticulates to each other and to the rubbing surfaces played an important role in the rapid decrease in wear rate with sliding time and with increase in temperature. Processes involved in the development of the wear-protective particle layers and mechanisms for the wear transitions have been described on the basis of experimental observations. The importance of triboparticulates in wear and its implications for wear protection are discussed.