Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

The role of triboparticulates in dry sliding wear

Jiang, Jiaren and Stott, F.H. and Stack, Margaret (1998) The role of triboparticulates in dry sliding wear. Tribology International, 31 (5). pp. 245-256. ISSN 0301-679X

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

In this paper, wear processes and mechanisms for wear transitions with sliding time and temperature during sliding of a nickel-based alloy, N80A, in oxygen at temperatures to 250 degrees C are discussed. Transitions in wear from high rates to low rates with sliding time were always observed at all the temperatures investigated. The transitions in wear were usually accompanied by transitions in contact resistance between the rubbing surfaces from nearly zero to positive high values. It was found that wear debris particles were heavily involved in the wear processes. The transitions in wear and contact resistance with sliding time mainly resulted from the development of wear-protective layers following the compaction of wear debris particles on the rubbing surfaces. The adhesion of triboparticulates to each other and to the rubbing surfaces played an important role in the rapid decrease in wear rate with sliding time and with increase in temperature. Processes involved in the development of the wear-protective particle layers and mechanisms for the wear transitions have been described on the basis of experimental observations. The importance of triboparticulates in wear and its implications for wear protection are discussed.