Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

In situ solid state electrochemical impedance spectroscopy of NiO scales

Liu, H. and Mojica-Calderon, C and Lyon, S.B. and Stack, M.M. (1999) In situ solid state electrochemical impedance spectroscopy of NiO scales. Solid State Ionics, 126 (3-4). pp. 363-372. ISSN 0167-2738

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

NiO scales thermally grown on pure nickel were characterised by in situ solid state electrochemical impedance spectroscopy (EIS). Possible sources of error including the amplitude of the applied sine wave signals, the input impedance of FRA, as well as the residence time at the measuring temperature were examined. Specimens oxidised in air for 6, 24 and 120 h at 800 degrees C respectively were characterised over the temperature range 150-700 degrees C. The results suggest that only one time constant charge transport process is dominant in the NiO scales. The temperature dependence of the electrical conductivity shows an activation energy of about 0.6 eV which is consistent with measurements on hulk NiO pellets. The capacitance and dielectric constants of NiO scales also show a strong dependence of temperature.