Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Intercomparison study of NOx passive diffusion tubes with chemiluminescence analysers and evaluation of bias factors

Jiménez, Araceli Sánchez and Heal, Mathew R. and Beverland, Iain J. (2011) Intercomparison study of NOx passive diffusion tubes with chemiluminescence analysers and evaluation of bias factors. Atmospheric Environment, 45 (18). pp. 3062-3068. ISSN 1352-2310

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Passive diffusion tubes (PDTs) are an inexpensive and simple method to monitor air pollutants. Numerous studies have investigated the performance of PDTs for NO2 but little attention has been paid to PDTs for NOx. The aim of this study was to evaluate the performance of NOx PDTs in three different urban environments. Duplicate NOx and NO2 PDTs were co-located with chemiluminescence analysers at kerbside, urban centre and background sites in the city of Glasgow for twelve 1-week exposures. PDT measurements generally showed good temporal correlations with NOx and NO2 determined by the continuous analysers. However detailed evaluation showed PDT measurements were variously influenced by factors causing bias, according to individual site characteristics: positive bias in both NOx and NO2 PDTs due to wind-associated shortening of diffusion path; positive bias in NO2 PDTs due to within tube chemical reaction between NO and O3; and, where NO concentrations were high, negative bias in NOx PDTs assumed due to incomplete oxidation of NO by the in-cap oxidising granules. In conclusion, where ambient NOx is low (less than a few tens of mgm3), and PDTs are in sheltered locations, NOx PDTs should perform well over 1-week exposures; however substantial negative bias for NOx PDTs is expected in polluted roadside environments for exposures of several weeks as is usually the case in ambient air quality deployment. Observations from this study suggest that sheltering PDTs from high wind is important to minimise positive bias due to wind-associated shortening of the diffusion path.