Strathprints logo
Strathprints Home | Open Access | Browse | Search | User area | Copyright | Help | Library Home | SUPrimo

Mechanical behaviour of bistable struts

Cai, J and Xu, Y and Feng, J and Zhang, J (2012) Mechanical behaviour of bistable struts. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 226 (C5). pp. 1321-1325. ISSN 0954-4062

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The mechanical behaviour of a bistable structural element, which is based on the snap-through and bifurcation properties of the von Mises truss, has been investigated in this article. By assuming the joint behaviour as ideal hinges and using the large deformation theory based on a linear elastic material, a simple analytical model for the stability of the von Mises truss was formulated. The governing set of non-linear equilibrium equations was obtained by applying the principle of stationary total potential energy. Then, the formulae of the snap-through and bifurcation buckling loads and the equilibrium path were given. In addition to the well-known cases of primary and secondary branches, a third type that the bifurcation buckling point lying on the descending branch of the load versus displacement curve was discussed. In this case, although its upper bifurcation load is lower than its upper snap-through buckling load, the truss experiences a symmetric snap-through mode first, and hence the bifurcation point is not physically relevant. Finally, the assumptions of the classical von Mises truss analysis are discussed.

Item type: Article
ID code: 34286
Keywords: struts, buckling, trusses, non-linear, snap-through, mechanical properties, Engineering (General). Civil engineering (General), Mechanical Engineering
Subjects: Technology > Engineering (General). Civil engineering (General)
Department: Faculty of Engineering > Civil and Environmental Engineering
Related URLs:
Depositing user: Pure Administrator
Date Deposited: 12 Oct 2011 14:42
Last modified: 27 Mar 2014 09:40
URI: http://strathprints.strath.ac.uk/id/eprint/34286

Actions (login required)

View Item