Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

The role of CN and CO ligands in the vibrational relaxation dynamics of model compounds of the [FeFe]-hydrogenase enzyme

Kaziannis, Spyridon and Wright, Joseph A. and Candelaresi, Marco and Kania, Rafal and Greetham, Gregory M. and Parker, Anthony W. and Pickett, Christopher J. and Hunt, Neil T. (2011) The role of CN and CO ligands in the vibrational relaxation dynamics of model compounds of the [FeFe]-hydrogenase enzyme. Physical Chemistry Chemical Physics, 13 (21). pp. 10295-10305. ISSN 1463-9076

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The vibrational dynamics of (mu-propanedithiolate)Fe-2(CO)(4)(CN)(2)(2-), a model compound of the active site of the [FeFe]-hydrogenase enzyme, have been examined via ultrafast 2D-IR spectroscopy. The results indicate that the vibrational coupling between the stretching modes of the CO and CN ligands is small and restricted to certain modes but the slow growth of off-diagonal peaks is assigned to population transfer processes occurring between these modes on timescales of 30-40 ps. Analysis of the dynamics in concert with anharmonic density functional theory simulations shows that the presence of CN ligands alters the vibrational relaxation dynamics of the CO modes in comparison to all-carbonyl model systems and suggests that the presence of these ligands in the enzyme may be an important feature in terms of directing the vibrational relaxation mechanism.