Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Surface and interstitial Ti diffusion at the rutile TiO2(110) surface

Mulheran, P. A. and Nolan, M. and Browne, C. S. and Basham, M. and Sanville, E. and Bennett, R. A. (2010) Surface and interstitial Ti diffusion at the rutile TiO2(110) surface. Physical Chemistry Chemical Physics, 12 (33). pp. 9763-9771. ISSN 1463-9076

[img]
Preview
PDF
Mulheran_PCCP10.pdf - Final Published Version

Download (2MB) | Preview

Abstract

Diffusion of Ti through the TiO2(110) rutile surface plays a key role in the growth and reactivity of TiO2. To understand the fundamental aspects of this important process, we present an analysis of the diffusion of Ti ad-species at the stoichiometric TiO2(110) surface using complementary computational methodologies of density functional theory corrected for on-site Coulomb interactions (DFT + U) and a charge equilibration (QEq) atomistic potential to identify minimum energy pathways. We find that diffusion of Ti from the surface to subsurface (and vice versa) follows an interstitialcy exchange mechanism, involving exchange of surface Ti with the 6-fold coordinated Ti below the bridging oxygen rows. Diffusion in the subsurface between layers also follows an interstitialcy mechanism. The diffusion of Ti is discussed in light of continued attempts to understand the re-oxidation of non-stoichiometric TiO2(110) surfaces.