Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Impaired Gluconeogenesis in a porcine model of paracetamol induced acute liver failure

Dabos, Konstantinos and Whalen, Henry and Newsome, Philip and Parkinson, John and Henderson, Neil and Sadler, Ian and Hayes, Peter and Plevris, John (2011) Impaired Gluconeogenesis in a porcine model of paracetamol induced acute liver failure. World Journal of Gastroenterology, 17 (11). pp. 1457-1461. ISSN 1007-9327

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

To investigate glucose homeostasis and in particular gluconeogenesis in a large animal model of acute liver failure (ALF). Six pigs with paracetamol induced ALF under general anaesthesia were studied over 25 h. Plasma samples were withdrawn every five hours from a central vein. Three animals were used as controls and were maintained under anaesthesia only. Using (1)H NMR spectroscopy we identified most gluconeogenic amino acids along with lactate and pyruvate in the animal plasma samples. No significant changes were observed in the concentrations of the amino acids studied in the animals maintained under anaesthesia only. If we look at the ALF animals, we observed a statistically significant rise of lactate (P < 0.003) and pyruvate (P < 0.018) at the end of the experiments. We also observed statistically significant rises in the concentrations of alanine (P < 0.002), glycine (P < 0.005), threonine (P < 0.048), tyrosine (P < 0.000), phenylalanine (P < 0.000) and isoleucine (P < 0.01). Valine levels decreased significantly (P < 0.05). Our pig model of ALF is characterized by an altered gluconeogenetic capacity, an impaired tricarboxylic acid (TCA) cycle and a glycolytic state.