Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Equal channel angular pressing with converging billets - FE simulation

Rosochowski, Andrzej and Olejnik, Lech (2011) Equal channel angular pressing with converging billets - FE simulation. In: 10th International Conference on Technology of Plasticity, ICTP 2011, 2011-09-25 - 2011-09-30.

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

A new concept of equal channel angular pressing (ECAP) with converging billets is proposed and analysed using finite element (FE) simulation. In its basic configuration, the new ECAP process uses two equal square input channels converging into a single output channel, which is twice as wide as the input channels so that it can accept two converging billets. The contact surface between converging billets plays the same role as a movable die wall in the output channel of classical ECAP and thus reduces friction and the process force. The process productivity is doubled and material pickup, especially problematic in the output channel, avoided. The results of FE analysis enable comparison between classical ECAP and the new process. It has been found that strain distribution is similar in both processes while force in ECAP with converging billets can be reduced by 20% (assuming friction coefficient of 0.1). An additional simulation has been carried out for the new process with the added back pressure, which makes strain distribution more uniform. Finely, a systematic approach to designing different ECAP configurations, which involve multiple billets in the input and output channels and realise ECAP routes A and B has been pro-posed.