Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Low-temperature protonic ceramic membrane fuel cells (PCMFCs) with SrCo0.9Sb0.1O3-delta cubic perovskite cathode

Ding, Hanping and Lin, Bin and Jiang, Yinzhu and Wang, Songlin and Fang, Daru and Dong, Yingchao and Tao, Shanwen and Peng, Ranran and Liu, Xingqiu and Meng, Guangyao (2008) Low-temperature protonic ceramic membrane fuel cells (PCMFCs) with SrCo0.9Sb0.1O3-delta cubic perovskite cathode. Journal of Power Sources, 185 (2). pp. 937-940. ISSN 0378-7753

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The SrCo0.9Sb0.1O3-delta (SCS) composite oxide with cubic perovskite structure was synthesized by a modified Pechini method and examined as a novel cathode for protonic ceramic membrane fuel cells (PCMFCs). At 700 degrees C and under open-circuit condition, symmetrical SCS cathode on BaZr0.1Ce0.7Y0.2O3-delta (BZCY7) electrolyte showed low polarization resistances (R-p) of 0.22 Omega cm(2) in air. A laboratory-sized tri-layer cell of NiO-BZCY7/BZCY7/SCS was operated from 500 to 700 degrees C with humidified hydrogen (similar to 3% H2O) as fuel and the static air as oxidant. A high open-circuit potential of 1.004V, a maximum power density of 259mWcm(-2), and a low polarization resistance of the electrodes of 0.14 Omega cm(2) was achieved at 700 degrees C.