Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Conductivity of a new pyrophosphate Sn0.9Sc0.1(P2O7)(1-delta) prepared by an aqueous solution method

Lan, Rong and Tao, Shanwen (2009) Conductivity of a new pyrophosphate Sn0.9Sc0.1(P2O7)(1-delta) prepared by an aqueous solution method. Journal of Alloys and Compounds, 486 (1-2). pp. 380-385. ISSN 0925-8388

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

New pyrophosphate Sn0.9Sc0.1(P2O7)(1-delta) was prepared by an aqueous solution method. The structure and conductivity of Sn0.9Sc0.1(P2O7)(1-delta) have been investigated. XRD analysis indicates that Sn0.9Sc0.1(P2O7)(1-delta) exhibits a 3 x 3 x 3 superstructure. It was found that Sn0.9Sc0.1(P2O7)(1-delta) prepared by an aqueous method is not conductive. The total conductivity of Sn0.9Sc0.1(P2O7)(1-delta) in open air is 2.35 x 10(-6) and 2.82 x 10(-9) S/cm at 900 and 400 degrees C respectively. In wet air, the total conductivity is about two orders of magnitude higher (8.1 X 10(-7) S/cm at 400 degrees C) than in open air indicating some proton conduction. SnP2O7 and Sn0.92In0.08(P2O7)(1-delta) prepared by an acidic method were reported fairly conductive but prepared by similar solution methods are not conductive. Therefore, the conductivity of SnP2O7-based materials might be related to the synthetic history. The possible conduction mechanism of SnP2O7-based materials has been discussed in detail.