Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Proton conductivity of potassium doped barium zirconates

Xu, Xiaoxiang and Tao, Shanwen and Irvine, John T. S. (2010) Proton conductivity of potassium doped barium zirconates. Journal of Solid State Chemistry, 183 (1). pp. 93-98. ISSN 0022-4596

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Potassium doped barium zirconates have been synthesized by solid state reactions. It was found that the solubility limit of potassium on A-sites is between 5% and 10%. Introducing extra potassium leads to the formation of second phase or YSZ impurities. The water uptake of barium zirconates was increased even with 5% doping of potassium at the A-site. The sintering conditions and conductivity can be improved significantly by adding 1 wt% ZnO during material synthesis. The maximum solubility for yttrium at B-sites is around 15 at% after introducing 1 wt% zinc. The conductivity of Ba0.95K0.05Zr0.85 Y0.11Zn0.04O3-delta at 600 degrees C is 2.2 x 10(-3) S/cm in wet 5% H-2. The activation energies for bulk and grain boundary are 0.29(2), 0.79(2)eV in wet 5% H-2 and 0.31(1), 0.74(3)eV in dry 5% H-2. A power density of 7.7 mW/cm(2) at 718 degrees C was observed when a 1 mm thick Ba0.95K0.05Zr0.85Y0.11Zn0.04O3-delta pellet was used as electrolyte and platinum electrodes.