Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Durability study of an intermediate temperature fuel cell based on an oxide-carbonate composite electrolyte

Zhang, Lei and Lan, Rong and Petit, Christophe T. G. and Tao, Shanwen (2010) Durability study of an intermediate temperature fuel cell based on an oxide-carbonate composite electrolyte. International Journal of Hydrogen Energy, 35 (13). pp. 6934-6940. ISSN 0360-3199

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

It was reported that ceria-carbonate composites are promising electrolyte materials for intermediate temperature fuel cells. The conductivity stability of composite electrolyte with co-doped ceria and binary carbonate was measured by AC impedance spectroscopy. At 550 degrees C, the conductivity dropped from 0.26 to 0.21 S cm(-1) in air during the measured 135 h. At a constant current density of 1 A cm(-2), the cell performance keeps decreasing at 550 degrees C, with a maximum power density change from 520 to 300 mW cm(-2). This is due to the increase of both series and electrode polarisation resistances. Obvious morphology change of the electrolyte nearby the cathode/electrolyte interface was observed by SEM. Both XRD and FT-IR investigations indicate that there are some interactions between the doped ceria and carbonates. Thermal analysis indicates that the oxide-carbonate composite is quite stable at 550 degrees C. The durability of this kind of fuel cell is not good during our experiments. A complete solid oxide-carbonate composite would be better choice for a stable fuel cell performance.