Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Durability study of an intermediate temperature fuel cell based on an oxide-carbonate composite electrolyte

Zhang, Lei and Lan, Rong and Petit, Christophe T. G. and Tao, Shanwen (2010) Durability study of an intermediate temperature fuel cell based on an oxide-carbonate composite electrolyte. International Journal of Hydrogen Energy, 35 (13). pp. 6934-6940. ISSN 0360-3199

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

It was reported that ceria-carbonate composites are promising electrolyte materials for intermediate temperature fuel cells. The conductivity stability of composite electrolyte with co-doped ceria and binary carbonate was measured by AC impedance spectroscopy. At 550 degrees C, the conductivity dropped from 0.26 to 0.21 S cm(-1) in air during the measured 135 h. At a constant current density of 1 A cm(-2), the cell performance keeps decreasing at 550 degrees C, with a maximum power density change from 520 to 300 mW cm(-2). This is due to the increase of both series and electrode polarisation resistances. Obvious morphology change of the electrolyte nearby the cathode/electrolyte interface was observed by SEM. Both XRD and FT-IR investigations indicate that there are some interactions between the doped ceria and carbonates. Thermal analysis indicates that the oxide-carbonate composite is quite stable at 550 degrees C. The durability of this kind of fuel cell is not good during our experiments. A complete solid oxide-carbonate composite would be better choice for a stable fuel cell performance.