Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

CuInS2 quantum dots synthesized by a solvothermal route and their application as effective electron acceptors for hybrid solar cells

Yue, Wenjin and Han, Shikui and Peng, Ruixiang and Shen, Wei and Geng, Hongwei and Wu, Fan and Tao, Shanwen and Wang, Mingtai (2010) CuInS2 quantum dots synthesized by a solvothermal route and their application as effective electron acceptors for hybrid solar cells. Journal of Materials Chemistry, 20 (35). pp. 7570-7578. ISSN 0959-9428

Full text not available in this repository. (Request a copy from the Strathclyde author)


This paper describes a solvothermal approach to synthesize CuInS2 quantum dots (QDs) and demonstrates their application as a potential electron accepting material for polymer-based hybrid solar cells, for the first time. The CuInS2 QDs with a size of 2-4 nm are synthesized by the solvothermal method with 4-bromothiophenol (HSPh) as both reduction and capping agents, and characterized by XRD, XPS, TEM, FT-IR, cyclic voltammetry (CV), and absorption and photoluminescence spectra. Results reveal that the CuInS2 QDs result from the solvothermal decomposition of a soluble organic sodium salt as an intermediate precursor formed by simple reactions among CuCl2, InCl3, HSPh and Na2S at room temperature; they have an ionization potential (IP) of -5.8 eV and an electron affinity (EA) of -4.0 eV and can quench effectively the luminescence of poly(2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylene vinylene) (MEH-PPV). Due to the favorable IP and EA positions with respect to MEH-PPV, the CuInS2 QDs act as an effective electron acceptor for the hybrid solar cells based on MEH-PPV/CuInS2-QDs blends with a wide spectral response extending from 300 to 900 nm, by allowing the efficient charge separation for neutral excited states produced either on the polymer or on the QDs. The MEH-PPV/CuInS2-QDs solar cells exhibit a promising open circuit voltage (V-oc) of 0.62 V under the monochromic illumination of 15.85 mW cm(-2) at 470 nm. The charge transfer processes in the solar cells are also described.