Strathprints logo
Strathprints Home | Open Access | Browse | Search | User area | Copyright | Help | Library Home | SUPrimo

CuInS2 quantum dots synthesized by a solvothermal route and their application as effective electron acceptors for hybrid solar cells

Yue, Wenjin and Han, Shikui and Peng, Ruixiang and Shen, Wei and Geng, Hongwei and Wu, Fan and Tao, Shanwen and Wang, Mingtai (2010) CuInS2 quantum dots synthesized by a solvothermal route and their application as effective electron acceptors for hybrid solar cells. Journal of Materials Chemistry, 20 (35). pp. 7570-7578. ISSN 0959-9428

Full text not available in this repository. (Request a copy from the Strathclyde author)


This paper describes a solvothermal approach to synthesize CuInS2 quantum dots (QDs) and demonstrates their application as a potential electron accepting material for polymer-based hybrid solar cells, for the first time. The CuInS2 QDs with a size of 2-4 nm are synthesized by the solvothermal method with 4-bromothiophenol (HSPh) as both reduction and capping agents, and characterized by XRD, XPS, TEM, FT-IR, cyclic voltammetry (CV), and absorption and photoluminescence spectra. Results reveal that the CuInS2 QDs result from the solvothermal decomposition of a soluble organic sodium salt as an intermediate precursor formed by simple reactions among CuCl2, InCl3, HSPh and Na2S at room temperature; they have an ionization potential (IP) of -5.8 eV and an electron affinity (EA) of -4.0 eV and can quench effectively the luminescence of poly(2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylene vinylene) (MEH-PPV). Due to the favorable IP and EA positions with respect to MEH-PPV, the CuInS2 QDs act as an effective electron acceptor for the hybrid solar cells based on MEH-PPV/CuInS2-QDs blends with a wide spectral response extending from 300 to 900 nm, by allowing the efficient charge separation for neutral excited states produced either on the polymer or on the QDs. The MEH-PPV/CuInS2-QDs solar cells exhibit a promising open circuit voltage (V-oc) of 0.62 V under the monochromic illumination of 15.85 mW cm(-2) at 470 nm. The charge transfer processes in the solar cells are also described.

Item type: Article
ID code: 34075
Keywords: polymer photovoltaic cells, single-source precursors, semiconductor nanocystals, conjugated polymers, energy transfer, PPV derivatives, nanoparicles, polythiophene, devices, composites, Chemical technology, Materials Chemistry, Chemistry(all)
Subjects: Technology > Chemical technology
Department: Faculty of Engineering > Chemical and Process Engineering
Depositing user: Pure Administrator
Date Deposited: 10 Oct 2011 14:01
Last modified: 10 Dec 2015 20:27

Actions (login required)

View Item View Item