Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Cost-effective solid oxide fuel cell prepared by single step co-press-firing process with lithiated NiO cathode

Zhang, Lei and Lan, Rong and Kraft, Arno and Wang, Mingtai and Tao, Shanwen (2010) Cost-effective solid oxide fuel cell prepared by single step co-press-firing process with lithiated NiO cathode. Electrochemistry Communications, 12 (11). pp. 1589-1592. ISSN 1388-2481

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

A cost-effective cell fabrication process was developed for intermediate temperature solid oxide fuel cells (IT-SOFCs). Co-doped ceria Ce0.8Gd0.05Y0.15O1.9 (GYDC) was synthesized by carbonate co-precipitation method. Lithiated NiO was prepared by glycine-nitrate combustion method and adopted as cathode material for IT-SOFCs. Single cell was fabricated by one-step thy-pressing and co-firing anode, anode functional layer (AFL), electrolyte and cathode together at 1200 degrees C for 4 h. The cell presented decent performance and an overall electrode polarization resistance of 0.54 Omega cm(2) has been achieved at 600 degrees C. These results demonstrate the possibility of using lithiated NiO as cathode material for ceria-based IT-SOFCs and the development of affordable fuel cell devices is encouraged.