Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Structural and electrochemical properties of the perovskite oxide Pr0.7Sr0.3Cr0.9Ni0.1O3-delta

Tao, Shanwen and Irvine, John T. S. (2008) Structural and electrochemical properties of the perovskite oxide Pr0.7Sr0.3Cr0.9Ni0.1O3-delta. Solid State Ionics, 179 (19-20). pp. 725-731. ISSN 0167-2738

Full text not available in this repository. Request a copy from the Strathclyde author


The perovskite oxide Pr0.7Sr0.3Cr0.9Ni0.1O3-delta was synthesised by a corribustion method. Pr0.7Sr0.3Cr0.9Ni0.1O3-delta obtained at 1400 degrees C has been shown to have an orthorhombic structure with space group Pnma (62), a=5.4388(1)angstrom, b=7.6969(1)angstrom, c=5.4584(1)angstrom, V=228.50(1)angstrom(3) according to X-ray diffraction. The material is redox stable and maintains its structure in a reducing atmosphere. After reducing in 5% H-2 at 900 degrees C for 190 h, Pr0.7Sr0.3Cr0.9Ni0.1O3-delta Still exhibits an orthorhombic structure. A lattice volume expansion of 0.61% was observed during the reduction, which may be attributed to reduction of Pr, Cr and Ni ions accompanying loss of lattice oxygen. TGA analysis and EDS indicate Pr0.7Sr0.3Cr0.9Ni0.1O3-delta shows enhanced resistance to nickel reduction. The conductivities of this material in air and 5% H-2 were 27.4 and 1.37 S/cm respectively at 900 degrees C. Pr0.7Sr0.3Cr0.9Ni0.1O3-delta exhibits semiconductor behaviour in both air and 5% H-2. The anode polarisation resistance of Pr0.7Sr0.3Cr0.9Ni0.1O3-delta reached 0.98 Omega cm(2) at 900 degrees C in wet H-2 but still not good enough as a good SOFC anode although it could be further improved by optimisation of microstructure. (C) 2008 Elsevier B.V. All rights reserved.