Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Ligand exchange between arylcopper compounds and bis(hypersilyl)tin or bis(hypersilyl)lead: Synthesis and characterization of hypersilylcopper and a stannanediyl complex with a Cu-Sn bond

Klinkhammer, K W and Klett, J and Niemeyer, M (1999) Ligand exchange between arylcopper compounds and bis(hypersilyl)tin or bis(hypersilyl)lead: Synthesis and characterization of hypersilylcopper and a stannanediyl complex with a Cu-Sn bond. Chemistry - A European Journal, 5 (9). pp. 2531-2536. ISSN 0947-6539

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Bis(hypersilyl)tin (1) and bis(hypersilyl)lead (2) [hypersilyl= Hyp = tris(trimethylsilyl)silyl] undergo ligand exchange reactions with other carbene homologues to yield heteroleptic distannenes or diplumbenes. Here we report the extension of this reaction principle to coordinatively unsaturated arylcopper(I) compounds. The primary reaction products are probably adducts with the carbene homologues as Lewis base and the arylcopper compounds as Lewis acids. This is followed by rearrangement to the adducts HypCu-E-(Hyp)Ar* (E = Sn (6) and Pb (7); Ar* = C(6)H(3)Mes(2)-2,6,) of hypersilylcopper (9) and the heteroleptic stannanediyl or plumbanediyl. The complex may be the final product or may dissociate into its component parts, free hypersilylcopper (9) and the appropriate heteroleptic carbene homologue. The colorless hypersilylcopper forms a trimer (9), in the solid state with short Cu Cu contacts (238.4-241.5 pm). All observed Cu-Si bonds are relatively long. However, shorter distances (234.9-237.4pm) alternate with longer ones (249.2 pm), such that quasi-monomeric hypersilylcopper units can be identified. The dark green complex 6 exhibits a shorter Cu-Si bond (227.3 pm), The Sn-Cu bond length was determined to be 249.9 pm. The turquoise plumbanediyl Pb(Hyp)Ar* (8) is the first strictly monomeric mixed aryl silyl derivative, even in the solid state. The steric repulsions are obviously less than in the parent homoleptic compounds because the Pb-C bond in 8 is shorter (229.0 pm) and the C-Pb-Si angle (109.2 degrees) is markedly smaller.