Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Argumentation-based fault diagnosis for home networks

Dong, Changyu and Dulay, Naranker (2011) Argumentation-based fault diagnosis for home networks. In: 2nd ACM SIGCOMM workshop on Home networks, 2011-08-15.

[img] PDF (Argumentation-based Fault Diagnosis for Home Networks)
p37.pdf - Final Published Version

Download (910kB)

Abstract

Home networks are a fast growing market but managing them is a difficult task, and diagnosing faults is even more challenging. Current fault management tools provide comprehensive information about the network and the devices but it is left to the user to interpret and reason about the data and experiment in order to find the cause of a problem. Home users may not have motivation or time to learn the required skills. Furthermore current tools adopt a closed approach which hardcodes a knowledge base, making them hard to update and extend. This paper proposes an open fault management framework for home networks, whose goal is to simplify network troubleshooting for non-expert users. The framework is based on assumption-based argumentation that is an AI technique for knowledge representation and reasoning. With the underlying argumentation theory, we can easily capture and model the diagnosis procedures of network administrators. The framework is rule-based and extensible, allowing new rules to be added into the knowledge base and diagnostic strategies to be updated on the fly.The framework can also utilise external knowledge and make distributed diagnosis