Picture of aircraft jet engine

Strathclyde research that powers aerospace engineering...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers involved in aerospace engineering and from the Advanced Space Concepts Laboratory - but also other internationally significant research from within the Department of Mechanical & Aerospace Engineering. Discover why Strathclyde is powering international aerospace research...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Constructing multimetallic systems with the naphthalene-1,8-bis(thiolato) ligand

Robertson, Stuart D. and Slawin, Alexandra M. Z. and Woollins, J. Derek (2007) Constructing multimetallic systems with the naphthalene-1,8-bis(thiolato) ligand. European Journal of Inorganic Chemistry (2). pp. 247-253. ISSN 1434-1948

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Addition of 1 equiv. (Ph3P)Au(ClO4) (formed by ion exchange of Ph3PAuCl with AgClO4) to [naphthalene-1,8-bis(thiolato)]bis (triphenylphosphane) platinum results in the formation of a novel dimetallic cationic complex with a (triphenylphosphane)gold moiety attached to the sulfur of the naphthalene-1,8-bis(thiolato) ligand. NMR spectroscopic evidence suggests that this gold-containing fragment is fluxional in its bonding and X-ray crystallography confirms the asymmetric complex, which shows this gold atom attached to one of these sulfur atoms. Addition of more than 1 equiv. (Ph3P)Au-(ClO4) results in the formation of a tetrametallic sandwich complex with two bridging gold atoms between the sulfur atoms of the two PtS2C3 rings. Tri- and tetrametallic silver-containing complexes can be prepared by addition of 0.5 and 1 equiv. AgClO4 to (Ph3P)(2)Pt(S2C10H6), respectively. (c) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2007.