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Abstract
A comprehensive description is obtained of the two-dimensional steady gravity-driven flow with

prescribed volume flux of a thin film of Newtonian fluid with temperature-dependent viscosity

on a stationary horizontal cylinder. When the cylinder is uniformly hotter than the surrounding

atmosphere (positive thermoviscosity) the effect of increasing the heat transfer to the surrounding

atmosphere at the free surface is to increase the average viscosity and hence reduce the average

velocity within the film, with the net effect that the film thickness (and hence the total fluid load on

the cylinder) is increased to maintain the fixed volume flux of fluid. When the cylinder is uniformly

colder than the surrounding atmosphere (negative thermoviscosity) the opposite occurs. Increasing

the heat transfer at the free surface from weak to strong changes the film thickness everywhere (and

hence the load, but not the temperature or the velocity) by a constant factor which depends only

on the specific viscosity model considered. The effect of increasing the thermoviscosity is always to

increase the film thickness and hence the load. In the limit of strong positive thermoviscosity the

velocity is small and uniform outside a narrow boundary layer near the cylinder leading to a large

film thickness, while in the limit of strong negative thermoviscosity the velocity increases from zero

at the cylinder to a large value at the free surface leading to a small film thickness.
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† Electronic mail: b.r.duffy@strath.ac.uk, Telephone: + 44 (0) 141 548 3645, Fax: + 44 (0) 141 548

3345.
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I. INTRODUCTION

The non-isothermal flow of a thin film of fluid on a heated or cooled horizontal circular

cylinder is relevant to many industrial situations, including heat exchangers and various

coating processes. Pioneering work on this problem was done by Nusselt1,2, who studied

the steady condensation of a quiescent surrounding vapour (steam) into a thin film of fluid

(water) on a stationary horizontal cylinder. Extensions of this basic problem have been

considered by many subsequent authors, including, for example, Sparrow and Gregg3, Nicol

et al.4 and Shu and Wilks5, who included fluid inertia and thermal advection in the film,

Shekriladze and Gomelauri6, Fujii et al.7, Rose8 and Chen and Lin9, who considered the

influence of flow of the vapour, and Sarma et al.10 and Yang and Lin11, who considered

turbulent flow in the film. Condensation onto an elliptical (rather than a circular) cylinder

has been studied by Yang and Hsu12 for the case of laminar flow and by Lin and Yang13 for

the case of turbulent flow. Another notable work on the non-isothermal flow of a thin film

of fluid on a stationary horizontal cylinder is that by Reisfeld and Bankoff14, who undertook

a pioneering investigation of unsteady flow on a heated or cooled cylinder due to gravity,

surface tension, thermocapillary (i.e. variation of surface tension with temperature) and van

der Waals forces. Subsequently, Conlisk and Mao15 investigated the unsteady flow of a

thin film of fluid on a horizontal cylinder accounting for condensation from the surrounding

vapour for both one-component and two-component fluids.

In a number of practical situations thermoviscosity (i.e. variation of viscosity with tem-

perature) effects are significant, and as a result there have also been a number of studies

of a variety of non-isothermal flows of fluids with temperature-dependent viscosities on a

variety of substrates. In particular, Goussis and Kelly16,17 and Hwang and Weng18 inves-

tigated the stability of a layer of fluid with temperature-dependent viscosity flowing down

a heated or cooled inclined substrate, while Reisfeld and Bankoff19 and Wu and Hwang20
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independently considered the evolution and eventual rupture of a thin film of fluid with

temperature-dependent viscosity on a heated horizontal substrate subject to surface tension

and van der Waals forces. Selak and Lebon21 investigated the onset of convection in a qui-

escent layer of fluid with temperature-dependent viscosity on a heated or cooled horizontal

substrate subject to both buoyancy and thermocapillary effects. Geophysical applications

such as lava flows have motivated the study of the radial spreading of a thin film of fluid

with temperature-dependent viscosity on a horizontal substrate by Bercovici22 who included

thermal advection, and by Balmforth and Craster23 who considered a viscoplastic fluid with

a temperature-dependent viscosity and yield stress. Kabova and Kuznetsov24 calculated the

steady flow of a thin film of fluid with temperature-dependent surface tension and viscos-

ity down an inclined substrate. Wilson and Duffy25,26 and Duffy and Wilson27 studied the

steady flow of a rivulet with temperature-dependent viscosity down a heated or cooled in-

clined substrate for three viscosity models (namely a linear, an exponential and an Eyring

model). Sansom et al.28 considered the spreading of a thin film of fluid with temperature-

dependent viscosity on a horizontal substrate for three viscosity models (namely a linear, an

exponential and a biviscosity model) for both a heated or cooled substrate without internal

heating within the film and for a substrate at the ambient temperature with constant internal

heating within the film. Unsteady flow of a thin film of fluid with temperature-dependent

surface tension and viscosity on a uniformly rotating disk was considered independently by

Usha et al.29 and Wu30.

There is also a considerable body of literature on both two-dimensional and three-

dimensional isothermal thin-film flow on both the inside and the outside of a horizontal

cylinder which is also of relevance here. Lin et al.31 investigated three-dimensional evolution

and rupture of a film due to van der Waals forces. King et al.32 studied the three-dimensional

evolution of a film on both a horizontal and an inclined cylinder. Band et al.33 considered

two-dimensional flow driven by prescribed azimuthal variations in surface tension. Haimovich
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and Oron34 investigated the effect of axial oscillations of the cylinder on the evolution and

rupture of an axisymmetric film. In addition, there is a considerable and rapidly growing

body of work on isothermal thin-film flow on both the inside (often called “rimming flow”)

and the outside (often called “coating flow”) of a uniformly rotating circular cylinder build-

ing on the pioneering work by Moffatt35, Pukhnachev36 and Johnson37. For example, Duffy

and Wilson38 considered steady “curtain” flows on the outside of both a stationary and a

uniformly rotating cylinder, while Ashmore et al.39, Villegas-Dı́az et al.40 and Benilov et al.41

investigated various aspects of rimming flow, and Evans et al.42, Kelmanson43 and Hunt44

investigated various aspects of coating flow (the latter in the case of an elliptical cylinder).

However, despite the practical importance of the problem surprisingly little work has been

done on the steady gravity-driven flow of a thin film of fluid with temperature-dependent

viscosity on a heated or cooled horizontal cylinder. Recently Duffy and Wilson45 examined

this problem for both a stationary and a uniformly rotating cylinder in the special case

when the free surface is at the same uniform temperature as the surrounding atmosphere

(i.e. at leading order in the limit of large Biot number). In particular, they found that in

this case the film thickness (and hence the load, but not the temperature or the velocity)

can be obtained from that in the isothermal case by a simple re-scaling. However, they

did not appreciate that other re-scalings are possible in the case of a stationary cylinder

or undertake any analysis of the solution obtained. In the present work we build on the

foundations laid by Duffy and Wilson45 to obtain a comprehensive description of the steady

gravity-driven flow with prescribed volume flux of a thin film of fluid with temperature-

dependent viscosity on a heated or cooled stationary horizontal cylinder. In particular, we

investigate the effect of varying the heat transfer to or from the atmosphere at the free

surface and the thermoviscosity.
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II. THE VISCOSITY MODEL AND THE THERMOVISCOSITY NUMBER

So far as possible we will present results for a general viscosity model µ = µ(T ), where

µ(T ) is a monotonically decreasing function of temperature T satisfying (without loss of

generality) µ = µ0 and dµ/dT = −λ when T = T0, where λ > 0 is a prescribed positive

constant and T0 is the uniform temperature of the cylinder at which µ takes the constant

value µ0. However, when it is necessary to specify a particular viscosity model and, in

particular, for illustrative purposes, we adopt the widely used exponential viscosity model

µ(T ) = µ0 exp

(

−λ(T − T0)

µ0

)

(1)

(see, for example, Goussis and Kelly16,17, Hwang and Weng18, Selak and Lebon21, Balmforth

and Craster23, and Wilson and Duffy25).

Regardless of the specific viscosity model under consideration, an appropriate non-

dimensional measure of thermoviscosity (i.e. the variation of viscosity with temperature)

is provided by the thermoviscosity number, V , defined by

V =
λ(T0 − T∞)

µ0

, (2)

where T∞ is the uniform temperature of the atmosphere. Since the thermoviscosity number

has the same sign as T0 − T∞, situations in which the cylinder is hotter (colder) than the

atmosphere correspond to positive (negative) values of V . In practice, the magnitude of V

can vary over several orders of magnitude from arbitrarily small values (when the viscosity

is effectively independent of temperature and/or when the magnitude of the heating or

cooling is small) to reasonably large values (when the viscosity is strongly dependent on

temperature and/or when the magnitude of the heating or cooling is large). For example,

using the parameter values given by Selak and Lebon21 in the case |T0 − T∞| = 25 K yields

|V | = 0.3825 for acetic acid, |V | = 0.5225 for silicone oil, |V | = 0.625 for water, and

|V | = 2.5125 for glycerol, while Balmforth and Craster23 give “typical” values of |V | = 1 for
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FIG. 1: Geometry of the problem: steady two-dimensional flow of a thin film of Newtonian fluid with

temperature-dependent viscosity on a stationary horizontal cylinder which may be either uniformly hotter

or colder than the surrounding atmosphere.

wax and slurry, |V | = 5 for basaltic lava, |V | = 7 for syrup, and |V | = 10 − 18 for silicic

lava. Hence we will consider the full range of values from V = 0 to the limits V → ∞ and

V → −∞ in the present work.

III. PROBLEM FORMULATION

Consider two-dimensional steady gravity-driven flow of a thin film of Newtonian fluid with

uniform density ρ and temperature-dependent viscosity µ = µ(T ), where T denotes the (in

general) non-uniform temperature of the fluid, on a stationary circular cylinder of radius a

with its axis horizontal, the cylinder being at a uniform temperature T0, which may be either

hotter or colder than the uniform temperature T∞ ( 6= T0) of the surrounding atmosphere.

Referred to polar coordinates r = a+Y (with origin at the cylinder’s axis) and θ (measured

counter-clockwise from the horizontal) as shown in Figure 1, we take the free surface of

6



the fluid to be at r = a + h, the film thickness being denoted by h. The fluid velocity

u = ueθ + ver (where eθ and er denote unit vectors in the azimuthal and radial directions,

respectively), pressure p and temperature T are governed by the familiar mass-conservation,

Navier–Stokes and energy equations. On the cylinder r = a the velocity u satisfies the no-slip

and no-penetration conditions, and the temperature is T = T0 (a prescribed constant). On

the free surface r = a+h the usual normal and tangential stress balances and the kinematic

condition apply, as does Newton’s law of cooling

−kth∇T · n = αth(T − T∞), (3)

where kth denotes the thermal conductivity of the fluid (assumed constant), αth (≥ 0) denotes

an empirical surface heat-transfer coefficient, and n denotes the unit outward normal to

the free surface. Surface tension, viscous dissipation, inertia and thermal advection are all

neglected.

Since the flow is steady, the volume flux per unit axial length Q (measured positive in

the direction of increasing θ) is a piecewise constant, and since (as we shall show) the film

thickness h always becomes unbounded at the top (θ = π/2) and the bottom (θ = −π/2)

of the cylinder (where the tangential component of gravity is zero), it is natural to follow

previous studies of the isothermal problem (see, for example, Duffy and Wilson38) and to

interpret this as a curtain of fluid with prescribed constant volume flux QS (> 0) falling onto

the top of the cylinder and splitting into two films with constant azimuthal fluxes Q = QR

and Q = QL round the right-hand and left-hand sides of the cylinder, respectively, with a

corresponding curtain (also with flux QS) falling off at the bottom of the cylinder. By global

conservation of mass these fluxes are related by QS = QL − QR, but the relative split of

the flux between the two sides of the cylinder is not determined by the present theory. In

particular, the flow need not necessarily have left-to-right symmetry (i.e. QR and QL need

not necessarily be equal to −QS/2 and QS/2, respectively).

The total fluid load (i.e. the mass of fluid) per unit axial length on either side of the
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cylinder M is denoted by M = MR and M = ML on the right-hand and left-hand sides of

the cylinder, respectively, and hence the total fluid load on the cylinder is given by MR +ML.

We will consider only thin films, whose aspect ratio ǫ, defined by

ǫ =

(

µ0QS

ρga3

)1/3

≪ 1, (4)

is small. We non-dimensionalise and scale the system by writing

r = a(1 + ǫY ∗), h = ǫah∗, u = Uu∗, v = ǫUv∗,

p = pa + ǫaρgp∗, T = T∞ + (T0 − T∞)T ∗, µ = µ0µ
∗,

Q = QSQ
∗ = ǫaUQ∗, QR = QSQ

∗
R = ǫaUQ∗

R, QL = QSQ
∗
L = ǫaUQ∗

L,

M = ǫρa2M∗, MR = ǫρa2M∗
R, ML = ǫρa2M∗

L,































(5)

where the characteristic azimuthal fluid velocity U , defined to be equal to QS/ǫa, is given by

U =

(

ρgQ2
S

µ0

)1/3

(6)

and pa is the constant pressure in the surrounding atmosphere. Note that the non-

dimensionalisation of temperature given in (5) incorporates the factor T0 − T∞, which can

be either positive or negative, and so a little care is required in interpreting results for the

non-dimensional temperature T ∗ in terms of the dimensional temperature T . For clarity the

star superscripts on non-dimensional variables will be omitted henceforth.

Expressed in non-dimensional variables the fluid occupies 0 ≤ Y ≤ h for −π < θ ≤ π,

the flux Q takes the values Q = QR on the right-hand side of the cylinder |θ| < π/2 and

Q = QL on the left-hand side of the cylinder π/2 < |θ| ≤ π, with QL − QR = 1; also the

general viscosity model µ = µ(T ) satisfies µ = 1 and dµ/dT = −V when T = 1, and, in

particular, the exponential viscosity model (1) is given by

µ = exp(−V (T − 1)). (7)

At leading order in ǫ the governing equations become

uθ + vY = 0, (µuY )Y = cos θ, pY = − sin θ, TY Y = 0, (8)
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together with the boundary conditions

u = 0, v = 0 and T = 1 on Y = 0, (9)

uY = 0, p = 0 and TY +BT = 0 on Y = h, (10)

where B = ǫaαth/kth (≥ 0) is the non-dimensional Biot number (a non-dimensional measure

of heat transfer to or from the atmosphere at the free surface) and the suffixes Y and θ

denote the appropriate partial derivatives. The special case B = 0 corresponds to that of

a perfectly insulated free surface with no heat transfer (i.e. TY = 0 at Y = h), while at

leading order in the limit B → ∞ the free surface is at the same uniform temperature as

the atmosphere (i.e. T = 0 at Y = h), and so we will consider the full range of values from

B = 0 to the limit B → ∞ in the present work.

Introducing the rescaled variable y = Y/h (so that the fluid occupies 0 ≤ y ≤ 1) and

solving (8) subject to (9) and (10) for the temperature T = T (y, θ), the azimuthal velocity

u = u(y, θ) and the pressure p = p(y, θ) yields

T (y, θ) = 1 − Bhy

1 + Bh
, (11)

u(y, θ) = −h2 cos θ

∫ y

0

1 − ỹ

µ(T (ỹ, θ))
dỹ (12)

and

p(y, θ) = h(1 − y) sin θ. (13)

The stream function ψ = ψ(y, θ) (non-dimensionalised with QS and satisfying hu = ψy

and v = −ψθ with ψ = 0 on y = 0) is given by

ψ = −h3 cos θ

∫ y

0

∫ ȳ

0

1 − ỹ

µ(T (ỹ, θ))
dỹ dȳ = −h3 cos θ

∫ y

0

(1 − ỹ)(y − ỹ)

µ(T (ỹ, θ))
dỹ. (14)

The volume flux Q (= ψ(1, θ)) is given by

Q = h

∫ 1

0

u dy = −h3 cos θ

∫ 1

0

∫ y

0

1 − ỹ

µ(T (ỹ, θ))
dỹ dy, (15)
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leading to

Q = −h
3 cos θ

3
f, (16)

where f = f(θ) (> 0) is the fluidity of the fluid film, defined by

f = 3

∫ 1

0

∫ y

0

1 − ỹ

µ(T (ỹ, θ))
dỹ dy = 3

∫ 1

0

(1 − y)2

µ(T (y, θ))
dy. (17)

In the special case of constant viscosity µ ≡ 1 the fluidity is simply equal to unity, i.e.

f ≡ 1. Note that, since the flux Q is prescribed, (16) is the key equation which determines

the film thickness h. Furthermore, since by definition f > 0 and h > 0, (16) shows that

−Q/ cos θ > 0, i.e. that Q must always have the same sign as − cos θ. Thus we deduce

that −1 < QR < 0 and 0 < QL < 1, where the sign difference between QR and QL arises

because the flux is everywhere downwards, and so it is in the direction of increasing θ on the

left-hand side of the cylinder but is in the direction of decreasing θ on the right-hand side

of the cylinder. In fact, the present analysis also applies to the flow on the left-hand side of

the cylinder in the case QR = 0, QL = 1 (in which there is no fluid on the right-hand side

of the cylinder), and to the flow on the right-hand side of the cylinder in the case QR = −1,

QL = 0 (in which there is no fluid on the left-hand side of the cylinder).

The fluid loads on the right-hand and the left-hand sides of the cylinder are given by

MR =

∫ π/2

−π/2

h dθ (18)

and

ML =

∫ π

π/2

h dθ +

∫ −π/2

−π

h dθ, (19)

respectively.

Thus, for a specific choice of viscosity model µ = µ(T ), the film thickness h is determined

in terms of Q = QR (−1 ≤ QR < 0) on the right-hand side of the cylinder and in terms of

Q = QL (0 < QL ≤ 1) on the left-hand side of the cylinder by the algebraic equation (16) in

which f is given by (17), and the solutions for T , u, p, MR and ML are given explicitly by

(11)–(13), (18) and (19), respectively.
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Note that while the present problem has been obtained as the leading-order approximation

to the steady flow of a thin film of fluid on a large horizontal circular cylinder, exactly the

same problem also describes the leading-order approximation to the steady flow of a thin

film of fluid down any sufficiently slowly varying substrate with local angle of inclination to

the horizontal α = π/2 − θ, where 0 ≤ α ≤ π. In particular, the present analysis applies to

the widely studied problem of rectilinear flow down a planar substrate inclined at an angle

α to the horizontal.

From (11), (12), (14), (16) and (17) it is clear that the Biot number B appears only in the

combinations Bh, B2u, B3ψ and B3Q, and that Bh is a function of −B3Q/ cos θ (> 0). Thus,

in particular, we could remove B explicitly from the mathematical problem by rescaling h,

u, ψ and Q appropriately; however, since this obscures the physical interpretation of the

results obtained we retain B explicitly in what follows.

Combining (11), (12), (14), (16) and (17) shows that h, T , u, ψ and f depend on θ

only through cos θ, and so the flow has top-to-bottom symmetry, but (as we have already

mentioned) not necessarily left-to-right symmetry.

Using (11) and (17) one may show that

d (fh3)

dh
=

3h2

1 +Bh

∫ 1

0

(1 − y) [2 + 3Bh(1 − y)]

µ(T (y, θ))
dy > 0, (20)

and hence from (16) we find that ∂h/∂Q has the same sign as Q, which means that the film

thickness at each station θ increases monotonically with |Q|.

Similarly, from (16) we find that dh/dθ has the same sign as tan θ, which means that

the film thickness on the right-hand (left-hand) side of the cylinder increases monotonically

away from its minimum value at θ = 0 (θ = π).

Near the top and the bottom of the cylinder we have h → ∞, T ∼ 1 − y, and f → f̂

as θ → ±π/2, where from (17) the constant f̂ (> 0), which depends only on the specific
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viscosity model considered, is defined by

f̂ = 3

∫ 1

0

T 2

µ(T )
dT. (21)

Specifically, from (16) the thin-film approximation ultimately fails as the film thickness

becomes unbounded according to

h =

(

3Q

(|θ| − π/2) f̂

)1/3

− f̂ − ĝ

f̂B
+O

(

|θ| − π

2

)1/3

as θ → ±π
2
, (22)

where the constant ĝ (> 0), which (like f̂) also depends only on the specific viscosity model

considered, is defined by

ĝ = 2

∫ 1

0

T

µ(T )
dT. (23)

Hereafter we will, for simplicity, restrict our attention to the flow on the right-hand side

of the cylinder (|θ| < π/2) with flux Q = QR (−1 ≤ QR < 0) and load M = MR, from which

the corresponding results for the flow on the left-hand side of the cylinder (π/2 < |θ| < π)

with flux Q = QL (0 < QL ≤ 1) and load M = ML can be readily obtained.

IV. SPECIAL CASE OF CONSTANT VISCOSITY

If either there is no heat transfer to or from the atmosphere at the free surface (i.e. in

dimensional terms if αth = 0) so that B = 0 (in which case the fluid film is isothermal

with constant temperature T ≡ 1) or the viscosity is independent of temperature (i.e. in

dimensional terms if λ = 0) so that V = 0 (in which case the fluid film is non-isothermal

with non-constant temperature T 6≡ 1), then the fluid has constant viscosity µ ≡ 1 and

fluidity f ≡ 1. In either case we recover the classical isothermal solution in which h = h0,

u = u0 and ψ = ψ0, where

h0 =

(

− 3Q

cos θ

)1/3

, (24)

u0 = −h
2
0 cos θ

2
(2 − y)y (25)
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and

ψ0 = −h
3
0 cos θ

6
(3 − y)y2. (26)

In particular, (24) shows that the film thickness h0 increases monotonically with |θ| away

from its minimum value of (3|Q|)1/3 at θ = 0, becoming unbounded at the top and the

bottom of the cylinder according to

h0 =

(

3Q

|θ| − π/2

)1/3

+O
(

|θ| − π

2

)5/3

as θ → ±π
2
, (27)

in agreement with the corresponding general results obtained in Section III. The load M =

M0 is given by

M0 = 2

∫ π/2

0

h0 dθ = C0|Q|1/3, (28)

in which the numerical coefficient C0 is given by

C0 = 2

∫ π/2

0

(

3

cos θ

)1/3

dθ =
25/3π2

32/3Γ
(

2
3

)3
≃ 6.0669. (29)

V. GENERAL CASE OF NON-CONSTANT VISCOSITY

In general, if there is heat transfer to or from the atmosphere at the free surface (i.e. in

dimensional terms if αth > 0) so that B > 0 and the viscosity depends on temperature (i.e.

in dimensional terms if λ > 0) so that V 6= 0, then the fluid film is non-isothermal with,

in general, non-constant temperature, viscosity and fluidity. In the particular case of the

exponential viscosity model (7) we have

µ = exp(−V (T − 1)) = exp

(

BV hy

1 +Bh

)

= exp(Vy), (30)

where, for brevity, we have introduced the notation V = V(θ) defined by

V =
BV h

1 +Bh
, (31)

so that (12) yields the azimuthal velocity

u = −h
2 cos θ

V2
[V − 1 + (1 − V(1 − y)) exp(−Vy)] , (32)
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FIG. 2: Film thickness h plotted as a function of θ/π for (a) B = 0 (dash-dotted line), B = 10n

(n = −1.25, −1, −0.75, . . . , 1.25) in the case V = −5 (dotted lines) and B = 10n (n = −1.25, −1, −0.75,

. . . , 0.75) in the case V = 5 (solid lines) together with the leading order asymptotic solutions in the limit

B → ∞ in the cases V = −5 and V = 5 (dashed lines), and for (b) V = −30, −25, −20, . . . , 30 in the case

B = 1, when Q = −1/2.

(14) yields the stream function

ψ = −h
3 cos θ

V3
[(V − 1)(Vy − 1) + 1 − (2 − V(1 − y)) exp(−Vy)] (33)

and (17) yields the fluidity

f =
3

V3

[

(V − 1)2 + 1 − 2 exp(−V)
]

. (34)

Note that f is a monotonically decreasing function of V satisfying

f ∼ 6 exp(−V)

(−V)3
→ ∞ as V → −∞, (35)

f = 1 − V
4

+O(V2) as V → 0 (36)

and

f ∼ 3

V → 0 as V → ∞. (37)

Figures 2 and 3 show the film thickness h plotted as a function of θ/π for a range of

values of B and V , and the film thickness at θ = 0, h(0), plotted as a function of B for a
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FIG. 3: Film thickness at θ = 0, h(0), plotted as a function (a) of B for V = −20, −16, −12, . . . , 20 (solid

lines) together with the asymptotic solutions in the limits B → 0+ and B → ∞ in the cases V = −4 and 4

(dotted lines), and (b) of V for B = 0 and B = 10n (n = −1.5, −1.25, −1, . . . , 1.5) (solid lines) together

with the asymptotic solutions in the limits V → 0, V → ∞ and V → −∞ in the case B = 1 (dotted lines)

and the leading order asymptotic solution in the limit B → ∞ (dashed line), when Q = −1/2.

range of values of V and of V for a range of values of B, respectively. In particular, Figures

2 and 3 illustrate that h is a monotonically increasing (decreasing) function of B for positive

(negative) V , and a monotonically increasing function of V . In addition, Figure 3 shows

good agreement with the asymptotic results for h obtained subsequently.

Figure 4 shows the free-surface temperature at θ = 0, T (1, 0), plotted as a function of

B for a range of values of V and of V for a range of values of B. Taken together with the

results for h shown in Figures 2 and 3, Figure 4 illustrates that the free-surface temperature,

T (1, θ), is a monotonically decreasing function of both B and V .

Figure 5 shows the velocity u plotted as a function of Y = hy for a range of values of θ

for both a negative and a positive value of V , and Figure 6 shows the free-surface velocity at

θ = 0, u(1, 0), plotted as a function of B for a range of values of V and of V for a range of

values of B. In particular, Figure 5 shows that the velocity profiles for non-zero values of V

are, in general, quite different from the familiar semi-parabolic profile (25) in the constant

viscosity case V = 0. Figure 7 shows typical streamlines of the flow on the right-hand side
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FIG. 4: Free-surface temperature at θ = 0, T (1, 0), plotted as a function (a) of B for V = −20, −16, −12,

. . . , 20 (solid lines) together with the leading order asymptotic solution in the limit V → ∞ (i.e.

T (1, 0) = 0) (dashed line) and the leading order asymptotic solution in the limit V → −∞ (i.e. T (1, 0) = 1)

(dash-dotted line), and (b) of V for B = 0 and B = 10n (n = −1.5, −1.25, −1, . . . , 1.5) (solid lines)

together with the leading order asymptotic solution in the limit B → ∞ (i.e. T (1, 0) = 0) (dashed line),

when Q = −1/2.

FIG. 5: Velocity u plotted as a function of Y = hy for θ = 0, π/64, π/32, . . . , 31π/64 in the cases (a)

V = −5 and (b) V = 5, when Q = −1/2 and B = 1.

of the cylinder.

Figure 8 shows the load M plotted as a function of B for a range of values of V and of V

for a range of values of B. In particular, Figure 8 shows that M is a monotonically increasing
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FIG. 6: Free-surface velocity at θ = 0, u(1, 0), plotted as a function (a) of B for V = −10, −8, −6, . . . , 10

(solid lines) together with the asymptotic solutions in the limits B → 0+ and B → ∞ in the cases V = −2

and 2 (dotted lines) and the leading order asymptotic solution in the limit V → ∞ (i.e. u(1, 0) = 0) (dashed

line), and (b) of V for B = 0 and B = 10n (n = −1.5, −1.25, −1, . . . , 1) (solid lines) together with the

asymptotic solutions in the limits V → 0, V → ∞ and V → −∞ in the case B = 10−0.5 ≃ 0.3162 (dotted

lines) and the leading order asymptotic solution in the limit B → ∞ (dashed line), when Q = −1/2.

(decreasing) function of B for positive (negative) V , and a monotonically increasing function

of V . In addition, Figure 8 shows good agreement with the asymptotic results forM obtained

subsequently.

In order to obtain a complete understanding of the influence of varying B and V , in

the following Subsections VA–VE we analyse the behaviour in the asymptotic limits of

weak heat transfer at the free surface, B → 0+, strong heat transfer at the free surface,

B → ∞, weak thermoviscosity, V → 0, strong positive thermoviscosity, V → ∞, and strong

negative thermoviscosity, V → −∞, respectively. In addition, in the Appendix we analyse

the distinguished limit of strong thermoviscosity and weak heat transfer, |V | → ∞ and

B → 0+ with BV = O(1), in which, although the variation in temperature across the fluid

film small, thermoviscosity effects still enter the problem at leading order.
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FIG. 7: Typical streamlines of the flow on the right-hand side of the cylinder plotted for ψ = 0 (the

cylinder), Q/5, 2Q/5, 3Q/5, 4Q/5 and Q (the free surface) when Q = −1/2, B = 1 and V = 1.

FIG. 8: Load M plotted as a function (a) of B for V = −20, −16, −12, . . . , 20 (solid lines) together with

the asymptotic solutions in the limits B → 0+ and B → ∞ in the cases V = −4 and 4 (dotted lines), and

(b) of V for B = 0 and B = 10n (n = −1.5, −1.25, −1, . . . , 1.5) (solid lines) together with the asymptotic

solutions in the limits V → 0, V → ∞ and V → −∞ in the case B = 1 (dotted lines) and the leading order

asymptotic solution in the limit B → ∞ (dashed line), when Q = −1/2.
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A. The limit of weak heat transfer B → 0+

At leading order in the limit of weak heat transfer at the free surface, B → 0+, the free

surface is insulated (i.e. Ty = 0 at y = 1) and, as already discussed in Section IV, the fluid

film is isothermal with constant temperature T ≡ 1, viscosity µ ≡ 1 and fluidity f ≡ 1.

Hence the leading-order solutions for h, u and M are simply the isothermal solutions h0, u0

and M0 given by (24), (25) and (28), respectively.

The effect of variations in B first appear at O(B), to which order the solutions for h, T ,

u and M are given by

h = h0 +
BV h2

0

12
+O(B2), (38)

T = 1 − Bh0y +
B2(12 − V )h2

0y

12
+O(B3), (39)

u = u0 −
BV h3

0 cos θ

12
(4y2 − 7y + 2)y +O(B2) (40)

and

M = M0 + C1Q
2/3BV +O(B2), (41)

where the numerical coefficient C1 is given by

C1 =
1

6

∫ π/2

0

(

3

cos θ

)2/3

dθ =
π2

21/335/6Γ
(

2
3

)3
=

C0

4 × 31/6
≃ 1.2629. (42)

Note that the solutions (38)–(41) are valid for a general viscosity model satisfying µ = 1

and dµ/dT = −V when T = 1 to the order shown (but not to higher orders). The solution

(39) shows that the effect of weak heat transfer at the free surface is to decrease T slightly

from its constant isothermal value T ≡ 1 throughout the fluid film. Thus for positive

(negative) thermoviscosity V > 0 (V < 0) the viscosity is slightly increased (decreased) from

its constant isothermal value µ ≡ 1, and determining the sign of u1 shows that the magnitude

of the velocity is slightly increased (decreased) from its value in the isothermal case when

0 < y < (7−
√

17)/8 ≃ 0.3596 and slightly decreased (increased) when (7−
√

17)/8 < y ≤ 1,

with the net effect that the magnitude of the average fluid velocity is slightly decreased
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(increased) and hence that the film thickness (and hence the load) is slightly increased

(decreased) everywhere in order to accommodate the fixed volume flux of fluid.

B. The limit of strong heat transfer B → ∞

At leading order in the limit of strong heat transfer at the free surface, B → ∞, the free

surface is at the same uniform temperature as the atmosphere (i.e. T = 0 at y = 1) and the

fluid film has non-constant temperature T = T̂ = 1 − y and viscosity µ = µ̂ = µ(T̂ ). As

Duffy and Wilson45 showed, the leading-order solutions for u and f , denoted by û and f̂ , are

given by

û = −ĥ2 cos θ

∫ 1

T̂

T

µ(T )
dT (43)

and (21), respectively, where ĥ denotes the leading-order solution for h. Closed-form ex-

pressions for f̂ for linear, exponential and Eyring viscosity models are described in detail by

Wilson and Duffy25. Since f̂ is a constant (and not a function of θ as, in general, f is) the

leading-order solutions for h and M , the latter denoted by M̂ , are simply given by

ĥ =
h0

f̂ 1/3
=

(

− 3Q

f̂ cos θ

)1/3

, M̂ =
M0

f̂ 1/3
= C0

( |Q|
f̂

)1/3

, (44)

where h0 and M0 are the solutions for h and M of the corresponding isothermal problem with

the same flux given by (24) and (28) in which the constant C0 is again given by (29). Thus,

rather remarkably, for a general viscosity model the film thickness and the load (but not the

temperature or the velocity) at leading order in the limit of strong heat transfer are simply

re-scaled versions of their values for the corresponding isothermal problem with the same

flux. In particular, this means that for positive (negative) thermoviscosity the leading-order

film thickness and load are increased (decreased) from their values for the corresponding

isothermal problem with the same flux. Furthermore, in this limit V ∼ V , and so the leading

order expressions for µ, u, ψ and f are simply given by (30), (32), (33) and (34) with V

replaced by V , respectively.
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Note that the re-scaling (44) differs from that proposed by Duffy and Wilson45. In general,

the leading-order solutions for h, Q and M in the limit of strong heat transfer, denoted by ĥ,

Q̂ and M̂ , are given simply by ĥ = f̂−mh0, Q̂ = f̂ 1−3mQ0, and M̂ = f̂−mM0 for any non-zero

value of m, where h0 and M0 are the solutions for h and M of the corresponding isothermal

problem with flux Q0. Thus at leading order in the limit of strong heat transfer, the film

thickness and the load are simply re-scaled versions of their values for the corresponding

isothermal problem with the appropriate flux. The present scaling (44) corresponds to the

choice m = 1/3 and is simply the special case in which the flux remains unscaled. The

scaling proposed by Duffy and Wilson45 corresponds to the choice m = 1/2, who showed

that this the only possible choice for the corresponding problem of non-isothermal flow on a

uniformly rotating cylinder at leading order in the limit of strong heat transfer, but failed to

notice that there is no restriction on the value of m for the present problem of non-isothermal

flow on a stationary cylinder.

As might have been anticipated, this simple re-scaling property does not extend to higher

orders. Specifically, extending the analysis to O(1/B2) the solutions for h, T , u and M are

given by

h = ĥ− (V + 3)f̂ − 3

3f̂B
+O

(

1

B2

)

, (45)

T = T̂ +
y

Bĥ
+

(V f̂ − 3)y

3f̂B3ĥ2
+O

(

1

B3

)

, (46)

u = û− ĥ cos θ

3f̂BV

[

6(V − 1)

V
− (2V + 1)f̂

+

(

6[1 − V (1 − y)]

V
+ [1 + V (1 − y)(2 − 3y)]f̂

)

exp(−V y)
]

+O

(

1

B2

)

(47)

and

M = M̂ −
π
[

(V + 3)f̂ − 3
]

3f̂B
+O

(

1

B2

)

. (48)

The solution (46) shows that the effect of large-but-finite heat transfer at the free surface is

to increase T slightly from its leading-order value T = T̂ = 1 − y throughout the fluid film.
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FIG. 9: (a) Film thickness h plotted as a function of θ/π for V = −10, −8, −6, . . . , 10 (solid lines), and

(b) velocity u at θ = 0 plotted as a function of Y = hy for V = −3, −2, −1, . . . , 3 (solid lines), together

with the corresponding asymptotic solutions in the limit V → 0 (dotted lines), when Q = −1/2 and B = 1.

Thus for positive (negative) thermoviscosity V > 0 (V < 0) the viscosity is slightly decreased

(increased) from its leading-order value µ = µ̂ with the net effect that the film thickness is

slightly decreased (increased) uniformly in order to accommodate the fixed volume flux of

fluid, and hence that the load is slightly decreased (increased).

C. The limit of weak thermoviscosity V → 0

As already discussed in Section IV, at leading order in the limit of weak thermoviscosity,

V → 0, the fluid film has non-constant temperature T 6≡ 1 but constant viscosity µ ≡ 1 and

fluidity f ≡ 1. From (16) and (17) the solution for h is given by

h = h0 +
BV h2

0

12(1 +Bh0)
+O(V 2), (49)

and hence from (11), (12) and (18) the solutions for T , u and M are given by

T = 1 − Bh0y

1 +Bh0

− B2V h2
0y

12(1 +Bh0)3
+O(V 2), (50)

u = u0 −
BV h3

0 cos θ

12(1 +Bh0)
(4y2 − 7y + 2)y +O(V 2) (51)
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FIG. 10: (a) Film thickness h plotted as a function of θ/π for V = 7.5, 15, 22.5, . . . , 60 (solid lines), and

(b) velocity u at θ = 0 plotted as a function of Y = hy for V = 4, 8, 12, ..., 40 (solid lines), together with

the corresponding asymptotic solutions in the limit V → ∞ (dotted lines), when Q = −1/2 and B = 1.

and

M = M0 +
Q2/3BV

2 × 31/3

∫ π/2

0

dθ

(cos θ)2/3 +B(3|Q| cos θ)1/3
+O(V 2), (52)

where h0, u0 and M0 are the isothermal solutions given by (24), (25) and (28), respectively.

Note that the solutions (49)–(52) are valid for a general viscosity model satisfying µ = 1

and dµ/dT = −V when T = 1 to the order shown (but not to higher orders). The solutions

in this limit are similar to those in the limit B → 0+ described in Subsection VA and have

a similar physical interpretation. This behaviour is illustrated in Figure 9 which shows the

film thickness h plotted as a function of θ/π and the velocity u at θ = 0 plotted as a function

of Y = hy for a range of values of V near V = 0.

D. The limit of strong positive thermoviscosity V → ∞

In the limit of strong positive thermoviscosity, V → ∞, from (16) and (17) the solution

for h is given by

h = h0

(

V

3

)1/3

− 1

3B
+O

(

1

V 1/3

)

, (53)
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and hence from (11), (12) and (18) the solutions for T , u and M are given by

T = 1 − y +
y

Bh0

(

3

V

)1/3

− 2y

3B2h2
0

(

3

V

)2/3

+O

(

1

V

)

, (54)

u = −h
2
0 cos θ

3

(

3

V

)1/3

[1 − exp(−V y)]

− h0 cos θ

9B

(

3

V

)2/3

[1 − (1 + 3V y) exp(−V y)] +O

(

1

V

)

(55)

and

M = M0

(

V

3

)1/3

− π

3B
+O

(

1

V 1/3

)

, (56)

where h0 andM0 are the isothermal solutions for h andM given by (24) and (28), respectively.

In particular, these solutions show that at leading order in the limit of strong positive

thermoviscosity the temperature is given by T = 1 − y and the viscosity µ = exp(V y) is

exponentially large outside a narrow boundary layer of width O(1/V ) ≪ 1 near the cylinder

y = 0, resulting in a slow “plug flow” with a uniform (i.e. independent of y) velocity of

O(V −1/3) ≪ 1 outside the boundary layer and a large film thickness of O(V 1/3) ≫ 1. This

behaviour is illustrated in Figure 10 which shows the film thickness h plotted as a function

of θ/π and the velocity u at θ = 0 plotted as a function of Y = hy for a range of positive

values of V .

E. The limit of strong negative thermoviscosity V → −∞

In the limit of strong negative thermoviscosity, V → −∞, from (16) and (17) the solution

for h is given by

h =
1

B(−V )
log

(

QB3V 3

2 cos θ

)

+O

(

log(−V )2

V 2

)

, (57)

and hence from (11), (12) and (18) the solutions for T , u and M are given by

T = 1 − y

(−V )
log

(

QB3V 3

2 cos θ

)

+O

(

log(−V )

V 2

)

, (58)
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FIG. 11: (a) Film thickness h plotted as a function of θ/π for V = −30, −60, −90, . . . , −180 (solid lines),

and (b) velocity u at θ = 0 plotted as a function of Y = hy also for V = −30, −60, −90, . . . , −180 (solid

lines), together with the corresponding asymptotic solutions in the limit V → −∞ (dotted lines), when

Q = −1/2 and B = 1.

u = − cos θ

B2V 2

[(

QB3V 3

2 cos θ

)y {

log

(

QB3V 3

2 cos θ

)

(1 − y) + 1

}

− log

(

QB3V 3

2 cos θ

)

− 1

]

+O (log(−V )) (59)

and

M =
π log(|Q|B3(−V )3)

B(−V )
+O

(

log(−V )2

V 2

)

. (60)

In particular, these solutions show that at leading order in the limit of strong negative

thermoviscosity the temperature is given by T = 1 and the viscosity

µ =

(

2 cos θ

QB3V 3

)y

(61)

decreases from O(1) at the cylinder y = 0 to O((−V )−3) ≪ 1 at the free surface y = 1 and

that the velocity increases from zero at the cylinder (where there is a narrow boundary layer

of width O(1/ log(−V )) ≪ 1) to O(−V ) ≫ 1 at the free surface (where there is another

narrow boundary layer also of width O(1/ log(−V )) ≪ 1), resulting in a small film thickness

of O(log(−V )/(−V )) ≪ 1. This behaviour is illustrated in Figure 11 which shows the film

thickness h plotted as a function of θ/π and the velocity u at θ = 0 plotted as a function of

Y = hy for a range of negative values of V .
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VI. CONCLUSIONS

In the present work we obtained a comprehensive description of the two-dimensional

steady gravity-driven flow with prescribed volume flux of a thin film of Newtonian fluid with

temperature-dependent viscosity on a heated or cooled stationary horizontal cylinder. In

particular, we showed that for the exponential viscosity model (7) the effect of increasing

B depends on the sign of V . When the cylinder is hotter than the surrounding atmosphere

(i.e. when V > 0) the effect of increasing B is to decrease the average temperature and

so to increase the average viscosity and hence reduce the average velocity within the film,

with the net effect that the film thickness (and hence the total fluid load on the cylinder) is

increased to maintain the fixed volume flux of fluid. When the cylinder is colder than the

surrounding atmosphere (i.e. when V < 0) the opposite occurs. Similarly, we showed that

the effect of increasing V is always to increase the film thickness and hence the load. In order

to obtain a complete understanding of the influence of varying B and V , we also analysed

the behaviour in the asymptotic limits of weak heat transfer, B → 0+, strong heat transfer,

B → ∞, weak thermoviscosity, V → 0, strong positive thermoviscosity, V → ∞, and strong

negative thermoviscosity, V → −∞, as well as (in the Appendix) in the distinguished limit

of strong thermoviscosity and weak heat transfer, |V | → ∞ and B → 0+ with BV = O(1).

The asymptotic analysis in the limits B → 0+ and B → ∞ revealed that increasing B

from zero to infinity changes the film thickness everywhere (and hence the load, but not the

temperature or the velocity) by a constant factor of f̂−1/3, where f̂ is given by (21), which

depends only on the specific viscosity model considered. The asymptotic analysis in the

limits V → 0, V → ∞ and V → −∞ revealed that for the exponential viscosity model (7)

the behaviour of the solution for large positive thermoviscosity is very different from that

for large negative thermoviscosity, and that both are very different from that in the constant

viscosity case V = 0. Specifically, in the limit V → ∞ the viscosity is exponentially large of

O(exp(V )) ≫ 1 and the velocity is small and uniform (i.e. independent of y) of O(V −1/3) ≪ 1
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outside a narrow boundary layer of width O(1/V ) ≪ 1 near the cylinder, leading to a large

film thickness of O(V 1/3) ≫ 1, while in the limit V → −∞ the viscosity decreases from O(1)

at the cylinder to O((−V )−3) ≪ 1 at the free surface and the velocity increases from zero

at the cylinder to a large value of O(−V ) ≫ 1 at the free surface, leading to a small film

thickness of O(log(−V )/(−V )) ≪ 1.

APPENDIX A: DISTINGUISHED LIMIT OF STRONG THERMOVISCOSITY

AND WEAK HEAT TRANSFER |V | → ∞ AND B → 0+ WITH V̂ = BV = O(1)

Another interesting case also worth considering is the distinguished limit discussed by

Wilson and Duffy26 of strong thermoviscosity, |V | → ∞, and weak heat transfer at the free

surface, B → 0+, such that V̂ = BV = O(1), in which, although the variation in temperature

across the fluid film is small, specifically T = 1 −Bhy +O(B2), thermoviscosity effects still

enter the problem at leading order, i.e. the variation in viscosity across the fluid film is still

O(1). Note that in this limit the effective thermoviscosity number, V̂ = BV , defined in terms

of dimensional quantities by

V̂ =
λ(T0 − T∞)ǫaαth

µ0kth

, (A1)

and not the previously defined thermoviscosity number, V , is the appropriate non-

dimensional measure of thermoviscosity effects. In the particular case of the exponential

viscosity model (30) in this limit V ∼ V̂ h and so the leading order expressions for µ, u, ψ

and f are simply given by (30), (32)–(34) with V replaced by V̂ h, respectively.

Note that, in an analogous way to being able to remove B explicitly from the general

mathematical problem by rescaling appropriately (discussed in Section III), in this case

we could remove V̂ explicitly from the mathematical problem by rescaling h, u, ψ and Q

appropriately; however, since this again obscures the physical interpretation of the results

obtained we retain V̂ explicitly in what follows.

In the limit of “weak” thermoviscosity, V̂ → 0, the solutions for h, u and M are given by
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the corresponding results in the limit B → 0 given in Subsection VA, namely (38), (40) and

(41), with BV replaced by V̂ , and hence have the same physical interpretation.

In the limit of strong positive thermoviscosity, V̂ → ∞, the solutions for h, u and M are

given by

h =

(

− QV̂

cos θ

)1/2

+
1

V̂
+O

(

1

V̂ 5/2

)

, (A2)

u = −cos θ

V̂

(

− QV̂

cos θ

)1/2






1 − exp



−
(

−QV̂
3

cos θ

)1/2

y











+O

(

1

V̂ 2

)

(A3)

and

M = Ĉ
(

|Q|V̂
)1/2

+
π

V̂
+O

(

1

V̂ 5/2

)

, (A4)

in which the numerical coefficient Ĉ is given by

Ĉ = 2

∫ π/2

0

(

1

cos θ

)1/2

dθ = 2
√

2K

(

1√
2

)

≃ 5.2441, (A5)

where K(k) is the complete elliptic integral of the first kind with modulus k defined by

K(k) =

∫ 1

0

dx√
1 − x2

√
1 − k2x2

(A6)

(see, for example, Gradshteyn and Ryzhik46). These solutions differ from the corresponding

results in the limit V → ∞ given in Subsection VD, namely (53), (55) and (56), but have

a qualitatively similar physical interpretation. In particular, these solutions show that at

leading order in the limit of strong positive thermoviscosity the viscosity

µ = exp





(

−QV̂
3

cos θ

)1/2

y



 (A7)

is exponentially large outside a narrow boundary layer of width O(V̂ −3/2) ≪ 1 near the

cylinder y = 0, resulting in a slow “plug flow” with a uniform (i.e. independent of y) velocity

of O(V̂ −1/2) ≪ 1 outside the boundary layer and a large film thickness of O(V̂ 1/2) ≫ 1.

In the limit of strong negative thermoviscosity, V̂ → −∞, the solutions for h, u and M

are given by

h =
1

(−V̂ )
log

(

QV̂ 3

2 cos θ

)

+O

(

log((−V̂ )6)

V̂ 4

)

, (A8)
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u = −cos θ

V̂ 2

[(

QV̂ 3

2 cos θ

)y{

log

(

QV̂ 3

2 cos θ

)

(1 − y) + 1

}

− log

(

QV̂ 3

2 cos θ

)

− 1

]

+O

(

log((−V̂ )6)

V̂ 2

)

(A9)

and

M =
π log(|Q|(−V̂ )3)

(−V̂ )
+O

(

log((−V̂ )6)

V̂ 4

)

. (A10)

At leading (but not higher) order these solutions coincide with the corresponding results in

the limit V → −∞ given in Subsection VE, namely (57), (59) and (60), and hence have the

same physical interpretation.
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