Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

The Möbius function of separable and decomposable permutations

Burstein, Alexander and Jelínek, Vít and Jelínková, Eva and Steingrimsson, Einar (2011) The Möbius function of separable and decomposable permutations. Journal of Combinatorial Theory Series A, 118 (8). 2346–2364.

[img]
Preview
PDF
mobius.pdf - Preprint

Download (400kB) | Preview

Abstract

We give a recursive formula for the Moebius function of an interval $[\sigma,\pi]$ in the poset of permutations ordered by pattern containment in the case where $\pi$ is a decomposable permutation, that is, consists of two blocks where the first one contains all the letters 1, 2, ..., k for some k. This leads to many special cases of more explicit formulas. It also gives rise to a computationally efficient formula for the Moebius function in the case where $\sigma$ and $\pi$ are separable permutations. A permutation is separable if it can be generated from the permutation 1 by successive sums and skew sums or, equivalently, if it avoids the patterns 2413 and 3142. A consequence of the formula is that the Moebius function of such an interval $[\sigma,\pi]$ is bounded by the number of occurrences of $\sigma$ as a pattern in $\pi$. We also show that for any separable permutation $\pi$ the Moebius function of $(1,\pi)$ is either 0, 1 or -1.