Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

The Möbius function of the permutation pattern Poset

Steingrimsson, Einar (2010) The Möbius function of the permutation pattern Poset. Journal of Combinatorics. 39–52.

[img]
Preview
PDF
0902.4011v3.pdf - Preprint

Download (148kB) | Preview

Abstract

A permutation \tau contains another permutation \sigma as a pattern if \tau has a subsequence whose elements are in the same order with respect to size as the elements in \sigma. This defines a partial order on the set of all permutations, and gives a graded poset P. We give a large class of pairs of permutations whose intervals in P have Mobius function 0. Also, we give a solution to the problem when \sigma occurs precisely once in \tau, and \sigma and \tau satisfy certain further conditions, in which case the Mobius function is shown to be either -1, 0 or 1. We conjecture that for intervals [\sigma,\tau] consisting of permutations avoiding the pattern 132, the magnitude of the Mobius function is bounded by the number of occurrences of \sigma in \tau. We also conjecture that the Mobius function of the interval [1,\tau] is -1, 0 or 1.