Picture of scraped petri dish

Scrape below the surface of Strathprints...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. Explore world class Open Access research by researchers at Strathclyde, a leading technological university.

Explore

Direct transcription of low-thrust trajectories with finite trajectory elements

Zuiani, Federico and Vasile, Massimiliano and Avanzini, Giulio and Palmas, Alessandro (2012) Direct transcription of low-thrust trajectories with finite trajectory elements. Acta Astronautica, 72. pp. 108-120. ISSN 0094-5765

[img]
Preview
PDF
AA_D_11_00197R1rel.pdf - Draft Version

Download (426kB) | Preview

Abstract

This paper presents a novel approach to the design of Low-Thrust trajectories, based on a first order approximated analytical solution of Gauss planetary equations. This analytical solution is shown to have a better accuracy than a second-order explicit numerical integrator and at a lower computational cost. Hence, it can be employed for the fast propagation of perturbed Keplerian motion when moderate accuracy is required. The analytical solution was integrated in a direct transcription method based on a decomposition of the trajectory into direct finite perturbative elements (DFPET). DFPET were applied to the solution of two-point boundary transfer problems. Furthermore the paper presents an example of the use of DFPET for the solution of a multiobjective trajectory optimisation problem in which both the total ∆V and transfer time are minimized with respect to departure and arrival dates. Two transfer problems were used as test cases: a direct transfer from Earth to Mars and a spiral from a low Earth orbit to the International Space Station.