Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Classical and quantum description of the atomic motion in superradiant light scattering from Bose-Einstein condensates

Piovella, N. and Gatelli, M and Martinucci, L and Bonifacio, Rodolfo and McNeil, Brian and Robb, Gordon (2002) Classical and quantum description of the atomic motion in superradiant light scattering from Bose-Einstein condensates. Laser Physics, 12 (1). pp. 188-197. ISSN 1054-660X

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

A theory of coherent light scattering from an elongated Bose-Einstein condensate exposed to an off-resonant laser beam is presented. The model describes the emission of two superradiant pulses along the sample's major axis simultaneous with the formation of a bidimensional atomic grating inside the sample, as was observed in a recent MIT experiment [Inouye, S. et al., 1999, Science, 285, 571]. We predictions of the semiclassical model, in which the atomic motion is treated classically, are compared with these of the quantum model, obtained including the quantum mechanical description of the atomic motion. In the quantum limit the superradiant regime becomes a sequential process, in which during each collective scattering atoms emit a it hyperbolic secant pulse and populate an adjacent momentum state.