Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Meta-metallation of N,N-dimethylaniline: contrasting direct sodium-mediated zincation with indirect sodiation-dialkylzinc co-complexation

Armstrong, David R. and Balloch, Liam and Hevia, Eva and Kennedy, Alan R. and Mulvey, Robert E. and O'Hara, Charles T. and Robertson, Stuart D. (2011) Meta-metallation of N,N-dimethylaniline: contrasting direct sodium-mediated zincation with indirect sodiation-dialkylzinc co-complexation. Beilstein Journal of Organic Chemistry, 7. pp. 1234-1248.

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Previously we reported that direct zincation of N,N-dimethylaniline by the mixed-metal zincate reagent 1 ((TMEDA)Na(TMP)(t-Bu)Zn(t-Bu)) surprisingly led to meta-metallation (zincation) of the aniline, as manifested in the crystalline complex 2 ((TMEDA)Na(TMP)(m-C6H4-NMe2)Zn(t-Bu)), and that iodination of these isolated crystals produced the meta-isomer N, N-dimethyl-3-iodoaniline quantitatively. Completing the study here we find that treating the reaction solution with iodine produces a 72% conversion and results in a mixture of regioisomers of N,N-dimethyliodoaniline, with the meta-isomer still the major product (ortho: meta: para ratio, 6:73:21), as determined by NMR. In contrast to this bimetallic method, sodiation of N,N-dimethylaniline with n-BuNa produced the dimeric, ortho-sodiated complex 3 (((TMEDA)Na(o-C6H4-NMe2))(2)), as characterised by X-ray crystallography and NMR. No regioisomers were observed in the reaction solution. Introducing t-Bu2Zn to this reaction solution afforded a cocrystalline product in the solid-state, composed of the bis-anilide 4 ((TMEDA)Na(o-C6H4-NMe2)(2)Zn(t-Bu)) and the Me2N-C cleavage product 5 ({(TMEDA)(2)Na}(+){(t-Bu2Zn)(2)(mu-NMe2)}(-)), which was characterised by X-ray crystallography. NMR studies of the reaction mixture that produces 4 and 5 revealed one additional species, but the mixture as a whole contained only ortho-species and a trace amount of para-species as established by iodine quenching. In an indirect variation of the bimetallic reaction, TMP(H) was added at room temperature to the reaction mixture that afforded 4 and 5. This gave the crystalline product 6 ((TMEDA)Na(TMP)(o-C6H4-NMe2)Zn(t-Bu)), the ortho-isomer of the meta-complex 2, as determined from X-ray crystallographic and NMR data. Monitoring the regioselectivity of the reaction by iodination revealed a 16.6:1.6:1.0 ortho: meta: para ratio. Interestingly, when the TMP(H) containing solution was heated under reflux for 18 hours more meta-isomer was produced (corresponding ratio 3.7:4.2:1.0). It is likely that this change has its origin in a retro reaction that produces the original base 1 as an intermediate. Theoretical calculations at the DFT level using the B3LYP method and the 6-311G** basis set were used to probe the energetics of both monometallic and bimetallic systems. In accord with the experimental results, it was found that ortho-metallation was favoured by sodiation; whereas meta- (closely followed by para-) metallation was favoured by direct sodium-mediated zincation.