Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Cavity cooling using intense blue-detuned light

Hemmerling, M. and Robb, G. R. M. (2011) Cavity cooling using intense blue-detuned light. Journal of Modern Optics, 58 (15). pp. 1336-1341. ISSN 0950-0340

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

We investigate the possibility of cooling an atomic gas enclosed in an optical cavity using blue-detuned laser light of sufficient intensity that excitation of the atoms cannot be neglected. We consider an ensemble of two-level atoms confined inside a simple Fabry-Perot cavity in two different geometric configurations: in one ('cavity-pump' configuration) the pump field is directed along the cavity axis and in the other ('atom-pump' configuration) the pump field is directed perpendicular to the cavity axis. Numerical simulations of the semi-classical models for each configuration are compared. Both configurations demonstrate cooling using a blue-detuned pump field. It is shown that in the cavity-pump configuration there is no collective enhancement of the cooling rate over that of free space blue-cooling. In contrast, the atom-pump configuration demonstrates collective enhancement of the cooling rate and intracavity field intensity.