Picture of scraped petri dish

Scrape below the surface of Strathprints...

Explore world class Open Access research by researchers at the University of Strathclyde, a leading technological university.

Explore

Cavity cooling using intense blue-detuned light

Hemmerling, M. and Robb, G. R. M. (2011) Cavity cooling using intense blue-detuned light. Journal of Modern Optics, 58 (15). pp. 1336-1341. ISSN 0950-0340

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

We investigate the possibility of cooling an atomic gas enclosed in an optical cavity using blue-detuned laser light of sufficient intensity that excitation of the atoms cannot be neglected. We consider an ensemble of two-level atoms confined inside a simple Fabry-Perot cavity in two different geometric configurations: in one ('cavity-pump' configuration) the pump field is directed along the cavity axis and in the other ('atom-pump' configuration) the pump field is directed perpendicular to the cavity axis. Numerical simulations of the semi-classical models for each configuration are compared. Both configurations demonstrate cooling using a blue-detuned pump field. It is shown that in the cavity-pump configuration there is no collective enhancement of the cooling rate over that of free space blue-cooling. In contrast, the atom-pump configuration demonstrates collective enhancement of the cooling rate and intracavity field intensity.