Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Quantum effects in spontaneous emission by a relativistic, undulating electron beam

Robb, G. R. M. and Bonifacio, R. (2011) Quantum effects in spontaneous emission by a relativistic, undulating electron beam. EPL: A Letters Journal Exploring the Frontiers of Physics, 94 (3). ISSN 0295-5075

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Current models of the effect of spontaneous emission on the electron beam dynamics neglect the discreteness of electron recoil associated with photon emission. We present a novel, one-dimensional model of the effect of spontaneous emission on the electron beam dynamics in an undulator both in the classical regime where discrete electron recoil is negligible, and in the quantum regime where it is significant. It is shown that in the classical regime, continuous decrease of the average electron energy and diffusive growth of the electron energy spread occurs, in agreement with previous classical models. In the quantum regime, it is shown that the evolution of the electron momentum distribution occurs as discrete momentum groups according to a Poisson distribution. The narrow momentum features of the quantum regime may be useful for generation of coherent radiation, which relies on electron beams having sufficiently narrow momentum/energy distributions.